超级稻一季高效栽培气象条件研究

超级稻一季高效栽培气象条件研究

一、一季超级稻高效栽培气象条件研究(论文文献综述)

张洪程,胡雅杰,杨建昌,戴其根,霍中洋,许轲,魏海燕,高辉,郭保卫,邢志鹏,胡群[1](2021)在《中国特色水稻栽培学发展与展望》文中研究表明水稻是我国最重要口粮作物,在保障国家粮食安全中具有举足轻重的作用。当前,我国水稻生产正面临由传统小规模生产向机械化、智能化、标准化和集约化的现代规模化生产方式转变,在此重要历史节点,回顾总结70年中国特色水稻栽培学发展历程与科技成就,对探索未来水稻栽培科技发展方向具有重要意义。70年来,我国水稻栽培科技界抓住水稻不同主产区大面积生产问题与关键技术瓶颈,深入开展水稻生长发育和产量、品质形成规律及其与环境条件、栽培措施等方面关系的研究,探索水稻生育调控、栽培优化决策和栽培管理等新途径与新方法,取得了一大批在生产上大面积应用的重要栽培技术和理论,形成了一批重大栽培科技成果。笔者着重从叶龄模式栽培理论及技术、群体质量及其调控、精确定量栽培、轻简化栽培、机械化栽培、超高产栽培、优质栽培、绿色栽培、逆境栽培和区域化栽培等十个方面阐述了改革开放以来中国水稻栽培取得的主要科技成就,并指出了未来中国水稻栽培创新发展的重要方向:一是加强水稻绿色优质丰产协调规律与广适性栽培技术研究;二是加强多元专用稻优质栽培研究;三是加强水稻超高产提质协同规律及实用栽培研究;四是加强直播稻、再生稻稳定丰产优质机械化栽培研究;五是加强水稻智能化、无人化栽培研究。

袁珅[2](2020)在《常规稻和杂交稻在节本栽培条件下的农学表现及能量与经济分析》文中提出水稻是我国最重要的粮食作物之一。在水稻生产面临劳动力短缺和生产成本过高等一系列挑战的重大转型时期,为了实现农业生产的节本增收,有越来越多的农民采用节本栽培管理方式并用成本低的常规稻品种代替成本高的杂交稻品种来应对这些挑战。有研究表明在资源投入充足的高产栽培管理下,杂交稻一般比常规稻具有更高的产量。但是在节本栽培条件下,常规稻和杂交稻的产量及其他农学特性表现孰优孰劣,前人研究的较少。此外,关于我国水稻生产能量分析的研究还比较少,特别是常规稻和杂交稻在不同栽培条件下的能量利用效率尚未见报道。因此,本研究于2014-2015年在湖北省武穴市以常规稻黄华占(HHZ)和杂交稻扬两优6号(YLY6)为供试材料,在移栽条件下,比较了在对照(当地农民习惯栽培)和五个节本栽培:减氮、节水、长秧龄、低密和综合低投入(包括全部四个单项节本栽培)处理中两个品种的产量、农艺性状、氮素利用效率、能量平衡和经济效益。该试验旨在明确是常规稻还是杂交稻更适合于节本栽培管理,这一结果将为优化水稻生产布局,建立高产高效栽培技术,实现水稻生产的可持续发展提供理论指导。主要试验结果如下:(1)YLY6在6个栽培管理条件下的平均产量在2014和2015年分别比HHZ高16.9%和5.9%,差异均达显着水平。YLY6产量较高的主要原因是其干物质积累、叶面积指数和千粒重比HHZ分别高出12.9%、24.3%和34.7%。此外,YLY6的产量在不同栽培处理和年份之间差异较小,表现出比HHZ较高的稳产性。在对照和节本栽培(5个节本栽培处理的平均)条件下,YLY6的产量分别比HHZ高11.9%和10.8%,说明杂交稻品种在节本栽培条件下仍然表现出与高产栽培条件下一致的产量优势。不同的节本栽培管理对水稻产量的影响不同。与对照相比,减氮和综合低投入降低了水稻产量,节水和低密处理对产量没有显着的影响,而长秧龄处理显着增加了水稻产量。与对照相比,单位面积颖花数的大幅度降低是减氮和综合低投入减产的主要原因,而长秧龄处理产量的提高是因为单位面积颖花数的增加。同时,节本栽培管理对水稻产量的影响存在显着的品种间差异。具体来看,与HHZ相比,YLY6在减氮处理中相对于对照的产量降幅更低,但是其在综合低投入处理中的产量降幅更大。HHZ在长秧龄处理中相对于对照的产量增幅高于YLY6。(2)从6个栽培处理和2个年份的平均值来看,YLY6的氮肥偏生产力、氮素干物质生产效率、氮素籽粒生产效率和氮素收获指数分别比HHZ高11.2%、6.4%、5.5%和6.0%。不同栽培处理间氮素利用效率的差异主要受氮肥用量的影响,降低氮肥用量能够显着提高氮素利用效率。与对照相比,减氮处理和综合低投入的氮肥用量降低了50%,显着提高了这两个处理的氮素利用效率。节水和低密处理对氮素利用效率没有显着的影响,长秧龄处理仅显着提高了HHZ的氮素利用效率。(3)与对照相比,由于氮肥、灌溉、种子或/和劳动力投入的减少,节本栽培处理(除长秧龄处理外,4个节本栽培处理的平均)的能量投入降低了0.8-32.3%。能量投入在YLY6和HHZ之间没有显着差异,而YLY6的能量产出在2014和2015年分别比HHZ高20.1%和5.0%。因此,YLY6的净能量和能量利用效率均显着高于HHZ。在对照和节本栽培条件下,YLY6的能量利用效率分别比HHZ高10.5%和9.3%。与对照相比,减氮、节水和综合低投入处理均显着提高了YLY6和HHZ的能量利用效率,而长秧龄处理仅显着提高了HHZ的能量利用效率。(4)由于YLY6的种子、农药和劳动成本高于HHZ,YLY6在各个栽培处理下的平均生产成本在2014和2015年分别比HHZ高16.2%和17.3%。YLY6的农药和劳动成本高于HHZ是因为其作物群体更大导致农药用量和打药次数增加。然而,YLY6和HHZ的经济产出没有显着的差异。HHZ在2014和2015年的净收益分别比YLY6高27.2%和41.8%。HHZ在2014和2015年的产出投入比分别是1.40和1.88,分别比YLY6高10.2%和22.9%。与对照相比,节本栽培降低了生产成本(长秧龄处理除外),并提高了水稻生产的净收益和产出投入比(减氮处理除外)。在对照和节本栽培条件下,HHZ的净收益分别比YLY6高39.0%和35.9%,HHZ的产出投入比分别比YLY6高15.4%和17.5%,说明常规稻品种在节本栽培条件下仍然表现出与高产栽培条件下一致的经济效益优势。综上所述,除减氮处理外节本栽培没有显着降低水稻产量,但是节本栽培减少了资源投入并降低了生产成本,从而降低了能量投入、提高资源利用效率和经济效益。在节本栽培条件下,杂交稻的产量表现、氮素利用效率和能量利用效率仍然优于常规稻,因此从水稻高产和保障国家粮食安全的角度看,杂交稻比常规稻更适合于节本栽培。但是从节本增收和提高农民种粮效益的角度出发,利用节本栽培技术种植常规稻比杂交稻更有优势。

帅鹏[3](2019)在《不同氮肥水平下超级杂交稻与普通杂交稻农艺表现的比较研究》文中认为当前我国水稻生产方式正朝着高产优质、资源高效、环境友好的目标发展。超级杂交稻具有产量潜力高、抗倒伏能力强的特点,对提高我国水稻单产意义重大。但是在实际生产中农民通常施用大量的氮肥以发挥超级杂交稻的产量潜力,这种生产方式会造成大量的氮肥流失和一系列环境污染问题,有悖于水稻绿色生产理念。以往对超级杂交稻产量潜力及其超高产生理机制的研究也主要是在高氮条件下进行,超级杂交稻在中低氮肥投入条件下的农艺表现研究较少。为此,本试验在2017-2018年以5个超级杂交稻品种(隆两优华占、晶两优华占、甬优2640、扬两优6号、丰两优4号)为试验材料,同时以5个普通杂交稻品种(荃优6号、旱优549、徽两优858、E两优476、荃优683)为对照,设置减氮(N120:120 kg N ha-1)、农民习惯施氮量(N180:180 kg N ha-1)和高氮(N270:270 kg N ha-1)三个氮肥处理,旨在评价超级杂交稻和普通杂交稻在不同氮肥水平下的产量、抗倒伏能力和氮素利用效率等农艺表现,并探究水稻品种抗倒伏能力与氮素利用效率之间的关系,以期为绿色高效水稻品种的选育和绿色栽培技术的创新提供理论依据。本试验的主要结果如下:(1)除2018年减氮处理下两类品种产量无显着差异外,超级杂交稻在两年三个氮肥水平下产量均显着高于普通杂交稻,在2017和2018年平均分别高出0.89和1.44 t ha-1。相比农民习惯施氮量处理,减氮处理没有造成产量的显着下降;高氮处理下由于倒伏的发生,2017和2018年分别减产3.8%和4.4%,其中2018年达到显着水平。在所有供试品种中,超级杂交稻品种隆两优华占和晶两优华占在各个氮肥水平下产量均显着高于其他品种,并且表现出优于其它品种的年际间稳产特性。(2)相比普通杂交稻,超级杂交稻的产量优势归因于较高的单位面积颖花数、结实率和干物质积累量。三个氮处理之间各产量构成因子、干物质积累和收获指数差异较小,且年际间不一致。在所有供试品种中,超级杂交稻品种隆两优华占和晶两优华占的高产稳产优势源于较高的单位面积颖花数和结实率。(3)相比普通杂交稻,超级杂交稻具有较低的目测倒伏评分和倒伏指数,较强的抗倒伏能力。随着氮肥施用量的增加,水稻目测倒伏评分和倒伏指数均呈上升趋势。在所有供试品种中,普通杂交稻徽两优858、超级杂交稻甬优2640和晶两优华占抗倒伏能力最高,普通杂交稻荃优683抗倒伏能力最低。水稻品种的抗倒伏能力与株高、相对重心高度和倒4节抗折力密切相关。(4)2018年农民习惯施氮量和高氮处理下超级杂交稻的氮素籽粒生产效率显着高于普通杂交稻,其它情况下无显着差异。2017年减氮和农民习惯施氮量处理下两类品种的氮肥偏生产力无显着差异,其它情况下超级杂交稻均显着高于普通杂交稻。与农民习惯施氮量处理相比,减氮处理的氮素籽粒生产效率和氮肥偏生产力分别提高14.5%和50.5%;高氮处理则分别下降11.9%和36.1%。在所有供试品种中,超级杂交稻品种隆两优华占和晶两优华占在两年各个氮处理下均表现出较高的氮素籽粒生产效率和氮肥偏生产力。(5)水稻品种的抗倒伏能力和氮素利用效率的关系在三个氮水平之间有所不同。在减氮处理下,倒伏指数与总氮吸收显着负相关,与氮素籽粒生产效率及氮肥偏生产力无显着相关关系;在农民习惯施氮量处理下,倒伏指数与氮肥偏生产力显着负相关,而与总氮吸收和氮素籽粒生产效率无显着相关;在高氮处理下,倒伏指数与氮肥偏生产力和氮素籽粒生产效率均呈显着负相关,与总氮吸收无显着相关关系。在所有供试品种中,超级杂交稻隆两优华占、晶两优华占和甬优2640均表现出抗倒伏能力强,同时氮素利用效率高的特点。综上所述,与普通杂交稻相比,超级杂交稻在表现出产量高和抗倒伏能力强的同时其总氮吸收、氮素籽粒生产效率和氮肥偏生产力并不低,这说明超级杂交稻抗倒能力的提高并没有导致氮素利用效率的降低。与农民习惯施氮量相比,减氮处理没有显着降低超级杂交稻的产量,这说明超级杂交稻高产的实现并不一定依赖于高氮投入。因此,超级杂交稻氮肥管理的优化可有效地构建水稻绿色栽培体系,超级杂交稻高产、高效、抗倒机制的研究可以为绿色高效水稻品种的培育提供理论指导。

黄礼英[4](2018)在《减氮背景下超高产水稻品种产量和氮肥利用效率的农学与生理研究》文中认为水稻是我国最重要的粮食作物之一,水稻生产对保障国家粮食安全起着重要作用。建国以来,我国水稻总产不断增加,这主要源于水稻单产的增加,而水稻单产的增加与品种改良密切相关。利用品种间杂种优势与理想株型相结合培育的籼型超级杂交稻和利用亚种间杂种优势培育的籼粳杂交稻品种均具有较高的产量潜力。然而这些超高产品种通常种植在高氮环境下,它们在减氮条件下的产量和氮肥利用效率(NUE)表现仍不清楚。为此,我们于2014-2015年在湖北省武穴市进行减氮条件下籼型超级杂交稻(扬两优6号和Y两优1号)、籼型杂交稻(珞优10号和川优6203)和籼型常规稻(黄华占和绿稻Q7)的产量和NUE差异比较试验,试验设置不施氮(N0:0 kg N ha-1)和减氮(N90:90 kg N ha-1)两个氮肥处理,并以当地农民习惯施氮量180 kg N ha-1(N180)作为高氮对照处理。在2015-2017年,我们比较了籼粳杂交稻甬优4949、籼型超级杂交稻扬两优6号和籼型常规稻黄华占在减氮条件下(100 kg ha-1的施氮量)的产量和NUE表现。了解这些品种在减氮背景下的产量和NUE表现及其农学和生理机制,可为绿色高效水稻新品种的培育和减氮栽培技术的发展提供理论依据。主要试验结果如下:(1)在不施氮、减氮和高氮对照处理下,籼型超级杂交稻2014和2015年的平均产量分别比籼型常规稻高5.4%、8.4%和6.6%,差异均达显着水平,而其与籼型杂交稻仅在施氮处理下差异显着,在减氮和高氮对照处理下两年平均分别比籼型杂交稻增产3.7%和8.8%。从产量构成因子方面分析,相对较高的结实率和籽粒重是籼型超级杂交稻在三个氮肥处理下产量高于籼型杂交稻和籼型常规稻的原因。从物质生产和分配方面分析,在不施氮肥处理下,籼型超级杂交稻产量高于籼型杂交稻和籼型常规稻主要归因于显着高的收获指数,在减氮处理下,主要是干物质积累和收获指数综合作用的结果,而在高氮对照处理下主要归因于较高的干物质积累。(2)在不施氮和减氮处理下,籼型超级杂交稻的植株总氮积累与籼型杂交稻和籼型常规稻无显着差异,但在高氮对照处理下,籼型超级杂交稻具有相对较高的植株总氮积累量。在三个氮肥处理下,籼型超级杂交稻的NUE(氮素籽粒生产效率、氮素收获指数、氮肥农学利用效率、氮素生理利用效率、氮肥吸收利用率和氮肥偏生产力)均高于籼型杂交稻和籼型常规稻,且其较高的NUE与其较高的收获指数和较低的齐穗期叶面积指数、成熟期叶片氮素浓度等有关。(3)籼粳杂交稻甬优4949在100 kg N ha-1下的产量显着高于籼型超级杂交稻扬两优6号和籼型常规稻黄华占,在2015-2017年平均分别比扬两优6号和黄华占增产10.6%和19.5%。从产量构成方面分析,显着高的每穗颖花数是甬优4949产量高于扬两优6号和黄华占的主要原因,而其较高的每穗颖花数主要源于较高的干物质颖花生产效率、氮素颖花生产效率和积温颖花生产效率。从物质生产和分配方面看,甬优4949的粒叶比和收获指数显着高于扬两优6号和黄华占;就干物质积累而言,籼粳杂交稻甬优4949花后干物质积累较高。较长的籽粒灌浆期、花后缓慢的叶片衰老、相对较长的绿叶面积持续期、相对较高的光能利用效率、较优的冠层结构(消光系数KL小)和光氮在冠层内的垂直分布(较大的氮素消光系数KN和KN/KL比值)是甬优4949花后干物质积累较高的原因。(4)就氮素积累和NUE而言,籼粳杂交稻甬优4949的植株总氮积累量不占优势,但其NUE显着高于籼型超级杂交稻扬两优6号和籼型常规稻黄华占,其氮素籽粒生产效率、氮素收获指数和氮肥偏生产力在2015-2017年平均分别比扬两优6号高8.2%、6.2%和10.6%,而比黄华占分别高18.4%、17.7%和19.5%,且其较高的NUE与其较高的收获指数和KN/KL值,较低的齐穗期叶面积指数和成熟期叶片氮素浓度有关。综上所述,超高产的籼型超级杂交稻和籼粳杂交稻品种在减氮背景下仍具有较高的产量,且其NUE均不低于其它类型水稻品种。在减氮条件下,较高的结实率和收获指数对籼型超级杂交稻的产量形成和NUE起着重要作用。较大的库容、较高的花后干物质积累、较优的源库协调性(较高的粒叶比和收获指数)以及良好的冠层结构和光氮在冠层内的协调分布是籼粳杂交稻甬优4949高产和氮高效的原因。明确这些超高产品种在减氮栽培下的产量和NUE表现及其形成机制,可为选育高产高效水稻新品种和建立高产高效栽培技术提供理论依据。

邓南燕[5](2018)在《中国水稻产量差评估及长江中下游地区增产途径探究》文中指出水稻作为中国最重要的粮食作物之一,其年生产量对国家粮食安全和社会稳定非常重要。中国的水稻生产能否满足未来的粮食需求,取决于未来全国水稻种植面积的的变化,提高产量潜力和实际产量以增加稻谷总产量,总产量的增速与粮食需求的增速是否匹配。本研究采用国际上通用的产量差评估系统,通过分析水稻的潜在产量、农民实收产量以及两者之间的差距来评估在现有耕地面积基础上中国水稻生产潜力及其可增长幅度。此外,本研究重点关注作为我国重要商品粮基地的长江中下游地区。有研究表明,近年来该地区水稻产量增长缓慢甚至停滞。为此,本研究试图通过品种和栽培两方面进一步探究长江中下游稻区的增产途径。综上,主要开展了以下模型模拟和试验验证研究:(1)通过选取各水稻主产区的代表性品种对ORYZA v3模型进行校验,为潜在产量的模拟奠定基础;(2)评估中国水稻潜在产量和产量差,且按单、双季稻作系统对中国不同地域的水稻单产和总产进行系统、全面的评估;(3)从品种角度出发,通过模拟籼粳杂交稻在长江中下游地区的产量来进一步探究该地区潜在产量的提升空间;(4)通过设置五个品种和3个播期进行大田试验以获得不同温光配置类型。测定水稻相关的生长形态、产量和品质指标,探明长江中下游地区温光资源特征及最适温光配置。主要研究结果如下:1.通过校验正后的ORYZA v3模型能够较好地模拟中国各水稻主产区的潜在产量。校正后该模型校正值与实际值之间的均方根误差值(RMSE)在产量、地上部生物量和生育期上分别为0.94 t/ha、1.05 t/ha和4 d,标准化均方根误差(RMSEn)分别为9%、5%和5%,R2值分别为0.83、0.87和0.97。而验证结果也有相似结论,表现出RMSE、RMSEn较小和R2接近1,证明了该模型能够较准确地模拟出高产水平下水稻生长与干物质分配的过程,从而能够较好地模拟产量。2.通过选择具有代表性的气象站点,对各个站点进行潜在产量的模拟,再将潜在产量、农民实际产量和产量差升区,得到全国水平的潜在产量、农民实收产量和产量差,分别为9.76 t/ha、6.78 t/ha和2.98 t/ha,因此全国平均产量差为潜在产量的31%。此外,单、双季稻的平均产量差为潜在产量的28%、34%,说明双季稻的单产具有更大的提升空间。而对于可达到总产(潜在总产的80%)而言,单、双季稻具有同等的增产潜力(7-8%),但是在达到潜在产量的80%之前,双季稻对总产的贡献率大于单季稻。此外,在中国水稻主要种植区域中,长江中下游地区的潜在产量和农民实收产量大于其它水稻主产区,产量差相对较小。在水稻主产省份中,当前水稻总产最高且总产量的可提升空间最大的省份为湖南、黑龙江和江西。3.通过不同情景模式,分析了缩小产量差与2030年中国水稻粮食供需平衡的关系。几种典型的未来情景设定及分析结果如下:(1)若产量差缩小到潜在产量的26%,到2030年中国的水稻生产可达到供需平衡;(2)若产量差缩小到潜在产量的20%,中国水稻总产还可比预计需求多出约19 Mt,相当于8%的耕地面积上所能生产的水稻产量;(3)若保持目前产量水平(产量差31%),且耕地面积维持不变,需进口11 Mt水稻粮食才能满足未来需求,相当于全球水稻贸易总量的18%左右,将对国际水稻市场造成一定影响;(4)若保持目前产量水平,且耕地面积下降10%,则需进口约32 Mt水稻粮食才能满足未来需求,相当于全球水稻贸易总量的50%左右,将对国际水稻市场造成巨大冲击。4.以甬优12号为代表的籼粳杂交稻品种在中国长江中下游单季稻区种植的平均潜在产量为13.90 t/ha,平均产量差为6.15 t/ha,当前农民实收产量为甬优12潜在产量的55%,因此可提高空间还有近45%。据估算,若使用籼粳杂交稻品种作为长江中下游地区的中稻品种,该地区的中稻潜在产量可提高20%左右。此外,当籼粳杂交稻品种的产量达到其潜在产量的80%,其它地区保持当前产量不变,中国在未来(2030年)的水稻总产量也可满足人们的粮食需求,且总产量可多出约6 Mt。5.通过大田播期试验,将供试的各品种和播期的组合以温度为主要因子,划分为3种温光配置类型。配置一(LH):温度前低后高,营养生长期比灌浆期温度低至少2℃;配置二(MM):温度变化居中,营养生长期和灌浆期温度相近(26℃左右);配置三(HL):温度前高后低,营养生长期比灌浆期温度高至少2℃。在这3种配置类型中,温度前高后低型的产量、品质和温光资源利用效率均最高。通过分析3种温光配置类型的温度分布特征发现,在长江中下游地区,当营养生长期温度范围在26-28℃,辐射在16 MJ m-2 d-1以上,且灌浆期温度范围在22-27℃时,相对产量大于1,有利于水稻获得高产。通过线性分析发现,当营养生长期温度、灌浆期温度分别在28℃、22℃左右时,产量、品质以及资源利用效率最高。

姜元华[6](2015)在《甬优系列籼粳杂交稻生产力优势与相关生理生态特征研究》文中指出本研究于2012-2013年在长江下游地区稻-麦两熟制地区(常熟、扬州市),以甬优系列籼粳稻杂交稻(A)为研究对象,当地超级(超高产)杂交粳稻(B)、常规粳稻(C)与杂交籼稻(D)为对照,采用不同轻简化机械化种植方式(钵苗摆栽、毯苗机插、钵苗机插),根据各类型品种特性和高产栽培理论设置高产潜力能够充分发挥的配套栽培管理措施,对不同类型品种群体生产力与相关生理生态特征进行系统比较分析,阐明甬优系列籼粳杂交稻生产力机制,明确超级籼粳亚种间杂交稻增产与调控途径,以期为超级稻超高产育种与栽培提供理论与实践参考依据。主要结果如下:1、不同年份、地点间产量构成因素形成特征存在差异(毯苗机插),(1)产量均呈A>B>C>D趋势,A类品种平均收获产量为12189.63kghm-2,分别较B、C和D增产8.98%、11.86%和20.06%,A类品种增产的主要原因为每穗粒数极显着高于B、C、D。(2)产量构成因素对产量的净贡献率表现为总颖花量>结实率>千粒重,对总颖花量的净贡献率表现为每穗粒数大于有效穗数,说明大穗依然是水稻高产的主要途径。(3)不同类型水稻品种拔节期茎蘖数表现为C>D>B>A,主茎和一级分蘖贡献率表现为A>D>C>B,二级分蘖贡献率表现为B>C>D>A;蜡熟期茎蘖组成特点与拔节期规律一致;不同类型水稻品种成穗率表现为C最大(75.76%),B其次(72.87%),A再次(66.80%),D最低(63.24%)。(4)不同类型水稻品种穗长表现为D>A>B>C,着粒密度、每穗粒数和单穗重均表现为A>B>D>C;一次枝梗数、二次枝梗数、一次枝梗总粒数和二次枝梗总粒数均表现为A>B>C>D,一次枝梗粒数对总粒的贡献率表现为C最大(41.00%),B其次(33.50%),A再次(31.83%),D最低(29.92%),二次枝梗总粒对每穗粒数的贡献率表现为D最大(70.08%),A其次(68.17%),B再次(66.50%),C最小(59.00%)。(5)不同类型水稻品种终极生长量Wo呈C>B>D>A趋势,最大灌浆速率Vmax表现为C>D>B>A,到达最大灌浆速率的时间Tmax表现为B>A>C>D,平均灌浆速率Vmean表现为D>C>B>A,有效灌浆时间T99表现为A>B>C>D;阶段性灌浆特征方面,灌浆量在渐增期、快增期和缓增期均表现为C>B>D>A;灌浆时间在渐增期表现为B>C>A>D,在快增期和缓增期均表现为A>B>C>D;灌浆速率在渐增期表现为D>A>C>B,在快增期和缓增期表现为C>D>B>A.籼粳杂交稻较杂交粳稻、常规粳稻和杂交籼稻有明显的产量优势,“穗大粒多”是其优势形成的基础。2、A与B、C、D超高产物质积累与转运特征(毯苗机插)存在差异。(1)不同类型水稻品种拔节至抽穗期、抽穗至成熟期、成熟期群体干物重均与产量呈极显着的正向直线关系,抽穗期群体干物重均与产量呈极显着的开口向下的抛物线关系。(2)籼粳杂交稻主要生育期单茎叶面积和单茎干物重均高于其它三类品种,且随着生育进程的推进差异不断扩大;籼粳杂交稻的生物学产量高于其它三类品种,而经济系数呈相反趋势。(3)在生育前期(移栽至拔节),籼粳杂交稻的干物质净积累量、积累比例、群体生长率、净同化率均低于其它三类品种,光合势介于粳、籼之间;生育中期(拔节至抽穗)干物质净积累量、积累比例、光合势均高于其它三类品种,群体生长率、净同化率介于粳、籼之间;生育后期(抽穗至成熟)干物质积累量、积累比例、群体生长率、光合势均高于其它三类品种,净同化率与粳稻相近。(4)在抽穗期,籼粳杂交稻的叶、鞘比例高于杂交粳稻和常规粳稻,低于杂交籼稻,茎的比例低于杂交粳稻和常规粳稻,高于杂交籼稻,穗的比例高于其它三类品种:乳熟期,叶、鞘的比例高于其它三类品种,茎的比例低于其它三类品种,穗的比例高于杂交粳稻和常规粳稻,低于杂交籼稻;成熟期,叶、鞘的比例低于杂交粳稻、常规粳稻,高于杂交籼稻,茎的比例高于其它三类品种,穗的比例低于其它三类品种。无论是抽穗期、乳熟期还是成熟期,籼粳杂交稻单茎叶、茎、鞘、穗的分配量均高于高于其它三类品种。(5)籼粳杂交稻叶、鞘的表观输出量高于杂交粳稻和常规粳稻,低于杂交籼稻,叶、鞘的输出率和转化率均低于其它三类品种;茎的最大输出量高于其它三类品种,输出率、转化率高于杂交籼稻,低于杂交粳稻和常规粳稻;茎的表观输出量、表观输出率和表观转化率均最低,单茎回升增重明显高于其它三类品种。充分依靠个体优势,在生育前期稳步形成有效的群体生长量基础上,着重提高中、后期光合系统生产性能,保证光合产物持续产出并得到合理分配,同时在生育后期具有协调的物质输出与转运机制,最终形成高积累的生物学产量,这既是籼粳杂交稻经济产量优势形成的关键原因也是进一步提高产量的重要途径。3、A与B、C、D不同粒位(上部一次枝梗U1,上部二次枝梗U2,中部一次枝梗M1,中部二次枝梗M2,下部一次枝梗M1,下部二次枝梗M2)群体灌浆、籽粒充实特性与相关生理生态学特征存在差异(钵苗机插)。(1)各类型品种共性规律为中位籽粒(U2,M1,M2,D1)群体灌浆与籽粒充实均属于上下同步中位异步灌浆类型(U2和D1同步,M1和M2异步),各类型各中位籽粒的两种灌浆峰位出现的先后顺序依次为M1、U2、D1、M2;群体灌浆量方面,总量呈A>B>C>D趋势,A类品种不同中位籽粒群体灌浆强度表现为U2>M2>M1>D1,其U2、D1的群体灌浆强度和U2、M2灌浆量明显高于B、C、D;籽粒灌浆充实方面,各粒位终极充实度介于粳、籼类型间,A类品种不同中位籽粒灌浆充实强度表现为M1>U1>D2>M2,其中U1籽粒充实度A>D>C>B而其强度表现为D>A>C>B,D2籽粒充实度为C>B>A>D而其强度亦表现为C>B>A>D。(2)主要生理生态指标方面,抽穗期营养器官物质积累量、抽穗至乳熟期营养器官物质输出量表现为A>B>C>D,从乳熟期开始至蜡熟期为止观察到营养器官中营养物质逐渐低于对照类型,蜡熟期和成熟期净光合速率表现为A>B>C>D,抽穗至成熟期光合势与前期物质输出和后期光合速率趋势一致;灌浆中期光-光合速率起始响应参数、二氧化碳-光合速率起始响应参数、群体根尖数均表现为A>B>C>D,根尖数依根径分布的峰位根径表现为DABC,灌浆前期和灌浆后期根系密度表现为C>B>A>D;拔节至抽穗期和抽穗至成熟期暗周期与温差平均累积速率和累积量均表现为A>B>C>D。说明钵苗机插高产栽培条件下,不同类型超级(超高产)稻各粒位同属于“上下同步中位异步”的灌浆类型,本研究中甬优系列籼粳杂交稻显示出“群体灌浆总量大、籽粒灌浆充实好”基本灌浆特征,文章阐明了生育中期群体营养器官中贮存足量灌浆原料并于灌浆前期与库有效对接、畅通输出,生育后期群体光合系统性能稳定持久,根系与叶系保持高活性生理机能以及生育中后期具有充分高效争用时空资源的特性是甬优系列籼粳杂交稻获取较群体灌浆量和良好籽粒充实的主要生理生态机制。4、A与B、C、D冠层结构与光合特性存在差异(毯苗机插)。(1)上3张叶片的长度、宽度表现为A>B>D>C,叶基角表现为D>A>B>C,披垂度表现为D>B>C>A。冠层上部叶面积密度表现为D>A>B>C,冠层下部叶面积密度表现为C>B>A>D,最大叶面积密度表现为A>D>B>C,最大叶面积密度出现的相对高度表现为D>A>B>C。冠层上部相对光照表现为A>B>C>D,冠层下部相对光照表现为B>A>C>D,冠层平均相对光照表现为B>A>C>D,冠层消光系数表现为C>D>B>A。(2)抽穗期群体叶面积指数、高效叶面积率均呈D>A>B>C趋势,有效叶面积率呈A>B>C>D趋势:颖花/叶和实粒/叶均表现为A>B>C>D。经济产量、生物产量均表现为A>B>C>D,经济系数呈D>C>B>A趋势;蜡熟期和成熟期剑叶的叶绿素含量、类胡萝卜素含量、PS Ⅱ的光化学效率及净光合速率呈A>B>C>D趋势;抽穗至成熟期剑叶的MAD含量呈D>C>B>A趋势,SOD、POD、CAT酶活性呈A>B>C>D趋势。与其他3种类型水稻相比,甬优系列籼粳杂交稻的冠层结构与光合特性具有显着优势,这是甬优系列杂交稻产量潜力正常发挥的生态生理基础,也是进一步提高亚种间杂交稻群体生产力的重要途径。5、A与B、C、D超高产根系形态生理特征存在差异(毯苗机插)。(1)在生育中、后期,A的根系干重、地上部干重、根尖数、根系长度、根系表面积、根系体积及根冠比均显着高于B、C和D。(2)抽穗期不定根(根径>0.3 mm)的根尖数、根系长度、根系表面积和根系体积占总根的比例表现为A大于B和C,小于D;细分支(根径≤0.1mm)与粗分支(0.1 mm<根径≤0.3 mm)的根尖数、根系长度、根系表面积和根系体积占总根的比例均表现为A大于D,小于B和C。抽穗期土层0~5 cm、5~10 cm和10~15 cm范围根干重占根系总干重的比例表现为A大于B和C,小于D;土层15~25 cm、25~35 cm、35~45 cm、45~55 cm范围根干重占根系总干重的比例表现为A大于D,小于B和C。(3)A抽穗后根系总吸收面积、根系活跃吸收面积、根系伤流强度以及根系氧化力和根系还原力均高于B、C和D。与杂交粳稻、常规粳稻和杂交籼稻相比,甬优系列籼粳杂交稻具有根冠协调水平高、群体根量大、分支结构优、根系深扎性好以及中、后期生理活性强等优势,这种根系特征为其超高产的实现提供了重要保障。6、A与B、C、D主要稻米品质与蒸煮食味品质存在差异(毯苗机插)。(1)理化指标方面,直链淀粉含量和蛋白质含量呈D>A>B>C趋势,胶稠度呈C>B>A>D趋势(2)食味计指标方面,香气、光泽、味道、口感和综合值表现为C>B>A>D,完整性表现为D>A>B>C。(3)TPA指标方面,硬度、弹性、内聚性、聚集度、回复性趋势一致,呈D>A>B>C趋势,粘着性的大小值呈C>B>A>D趋势(4)RVA指标方面,峰值黏度、热浆黏度、崩解值均呈C>B>A>D趋势,回复性、糊化温度呈D>A>B>C趋势。(5)变异系数分析表明,综合值、口感、光泽、咀嚼度、硬度、粘着性、回复值、崩解值等指标在品种类型间存在较大差异。(6)相关分析表明,蛋白质含量、直链淀粉含量与光泽、味道、口感、综合、峰值黏度、热浆黏度、崩解值呈显着或极显着负相关,与完整性、硬度、粘着性、弹性、内聚性、咀嚼度、回复性、最终黏度、回复值、糊化温度呈显着或极显着正相关;胶稠度呈相反趋势。本研究初步认为,长江下游地区籼粳杂交稻的食味品质介于粳籼类型之间,表现为优于籼稻,但稍逊于粳稻;直链淀粉与蛋白质含量是影响食味的关键因素;筛选出的综合值、口感、光泽、咀嚼度、硬度、粘着性、回复值、崩解值等指标可以作为品种类型食味评比的优先指标。7、A与B、C、D抗倒伏特征存在差异(毯苗机插)。(1)综合抗倒性方面,与B、C、D相比,A的弯曲力矩和抗折力得到协同提高,但二者的综合作用下,倒伏指数表现为D>A>B>C.(2)茎秆质构特征方面,A类品种基部节间的纵向载荷度、弹性、内聚性、抗弯强度等载荷能力指标以及硬度、脆度、穿刺强度、紧实度等穿刺性能的指标均高于B、C、D。(3)茎秆形态与解剖性状方面,A的株高、穗高、重心高、基部节间粗度、横截面积、茎壁面积、维管束总面积、大维管束面积、小维管束面积、大维管束数目、小维管束数目均高于B、C、D;A的相对重心高度、基部节间长度小于D而高于B、C;A的基部节间秆型指数、相对茎壁面积、相对维管束面积、大维管束相对面积、小微管束相对面积均低于B、C而高于D。(4)茎秆化学成分含量方面,A茎鞘中可溶性糖、淀粉、纤维素、木质素、K、Si、Ca、Cu、Zn等化学成分含量表现为低于B和C,高于D;茎鞘中N、Mg、Fe、Mn等化学成分含量表现为A高于B和C,低于D。(5)相关分析表明,倒伏指数与与重心高度、茎秆粗度、横截面积呈显着正相关,与相对重心高度、基部节间长度、N、Mg、Fe、Mn的含量呈极显着正相关;与淀粉、Cu的含量呈显着负相关,与秆型指数、相对茎壁面积、相对维管束面积、可溶性糖、纤维素、木质素、K、Si、Ca、Zn的含量呈极显着负相关。本研究初步认为,机插条件下,甬优系列籼粳杂交稻的茎秆抗倒性较杂交籼稻有大幅提高,但稍逊于杂交粳稻和常规粳稻,茎秆理化特性的差异与抗倒性密切相关。8、A与B、C、D养分积累与相关生理生态特征存在差异(毯苗机插)。(1)拔节至抽穗期、抽穗期、抽穗至成熟期、成熟期及抽穗至成熟期氮磷钾硅积累量均呈A>B>C>D趋势,而拔节期相反。(2)抽穗期和成熟期的干物质、叶面积,拔节至抽穗期、抽穗至成熟期的净积累量、光合势,灌浆中期蒸腾速率特征参数、荧光动力学参数、根系长度和表面积分支根总量均表现为A>B>C>D;灌浆中期根系长度和表面积依根径呈双峰分布,最大根径峰位介于粳、籼类型之间,长度和表面积峰位根径均表现为D>A>B=C;全生育光温资源平速率,全生育期、拔节至抽穗期、抽穗至成熟期光温积累量均表现为A>B>C>D.本文研究显示了机插高产栽培条件下,与对照相比,甬优系列籼粳杂交稻氮磷钾硅等营养积累量大,间接说明产量潜力实现有其植物营养学依据,本文从协同生理生态特征角度对其营养大量积累机制进行了探讨。

龚金龙[7](2014)在《籼、粳超级稻生产力及其形成的生态生理特征》文中研究指明追求高产更高产是稻作研究与发展的永恒主题。当前水稻种植面积因土地资源的贫乏和水资源的严重不足,已基本达到不可再增加的顶限,提高单位面积产量是增加水稻总产量的主要途径之一。为实现这一目标,各级政府和科研工作者提出了种种设想与途径,如“高产创建”、“粮丰工程”、“超级稻”等。通过行政、科研、推广等相关单位的齐心协作,中国超级稻取得了许多重大突破,至2013年我国认定的超级稻品种已达101个之多。其中,籼型超级稻以杂交稻为主,粳型超级稻全部为常规稻,因此开展高产栽培条件下常规粳型超级稻与超级杂交籼稻群体综合生产力与产量形成的生态生理特征的系统比较研究具有重要的理论意义与生产实践价值。本研究于2011-2012年在苏中地区,在稻麦(油)两熟籼、粳同季兼作条件下,选用能安全齐穗成熟和充分利用当地温光资源的偏迟熟高产当家籼、粳超级稻品种(中熟中籼和早熟晚粳)为试验材料,并配套高产栽培管理措施,以充分发挥其产量水平。在此基础上,深入分析两种类型品种产量形成机制与生态生理特征的差异,阐明粳稻的生育优势和高产机理,以期为超级稻品种的合理利用以及增产潜力的挖掘提供依据。主要结果如下:1、粳稻产量、穗数、群体颖花量、结实率、库容量、总充实量、茎蘖成穗率、着粒密度、一二次枝梗数比值、一二次枝梗总粒数比值、每穗一次枝梗数、一次枝梗单枝梗着粒数、每穗一次枝梗总粒数、一次枝梗结实率、二次枝梗结实率、米粒终极生长量、到达最大灌浆速率的时间、灌浆速率最大时的米粒重、活跃灌浆期和有效灌浆时间均高于籼稻,而籼稻每穗粒数、千粒重、穗长、单穗粒重、每穗二次枝梗数、二次枝梗单枝梗着粒数、每穗二次枝梗总粒数、起始生长势、最大灌浆速率和平均灌浆速率则高于粳稻,灌浆速率最大时的米粒重占米粒终极生长量的百分率则表现趋势不明显。籼、粳超级稻均为异步灌浆型,但籼稻两段灌浆现象更为明显,且籼稻灌浆启动快、充实快、持续时间短、呈速起速降的态势。粳稻弱势粒灌浆前、中、后期的灌浆充实量较籼稻分别高0.73%、2.59%、3.43%,随着籽粒灌浆的持续,粳稻灌浆优势不断加大。群体茎蘖稳升稳降、有效成穗数多、穗部构成合理、结实率高、灌浆速度稳定且持续时间长以及灌浆后期弱势粒较高的灌浆质量是粳稻扩库、促充实、稳产高产的关键。2、粳稻生育前期(移栽至拔节期)干物质积累量、光合势、群体生长率、净同化率及上三叶叶长、叶基角、叶开角、披垂度和叶面积衰减率、收获指数均小于籼稻,而生育中后期(拔节至成熟期)干物质积累量、光合势、群体生长率、净同化率及有效叶面积率、高效叶面积率、粒叶比(颖花/叶、实粒/叶、粒重/叶)、最大叶面积指数、总充实量、实收产量、生物产量、茎鞘最大输出量和表观输出量及比率均大于籼稻,差异显着或极显着。虽然粳稻主要生育期单茎干物重均不及籼稻,但群体数量优势保证粳稻具有较高的群体干物质积累量和叶面积,且随着生长发育的持续,群体光合物质生产优势不断加大,群体干物质积累量于抽穗后25d前后超过籼稻。粳稻灌浆后期(乳熟至成熟期)仍保持强劲生长优势,而灌浆初期(抽穗至乳熟期)茎鞘贮存物质合理输出,有效保障了高效光合层的安全支撑及高积累产量库的流畅充实。高生物学产量的稳定形成和叶面积“稳升缓降”态势以及拔节至成熟期较强的高效光合物质生产,是粳稻光合系统高效持续产出、灌浆充实多及高产形成的重要特征和原因。3、粳稻大田生长阶段生育进程迟于籼稻,成熟期粳稻较籼稻迟16.2d,其中抽穗至成熟期粳稻生育阶段天数较籼稻长25.82%,差异极显着。粳稻对低温具有较强的适应性,利于适当推迟抽穗结实,延长灌浆结实期与全生育期,增加对秋末温光资源的利用。粳稻经济产量、生物产量、日产量,全生育期天数、有效积温、光合有效辐射和光能利用率以及主要生育阶段天数、有效积温和光合有效辐射,抽穗至成熟期温度生产效率,拔节至成熟期干物质积累量和光能利用率均高于籼稻;而灌浆速率,全生育期温度生产效率以及播种至抽穗期温度生产效率,播种至拔节期干物质积累量和光能利用率均低于籼稻,差异显着或极显着。相关分析表明,水稻实收产量与全生育期天数、日产量和灌浆结实期天数均呈极显着的正相关,而与灌浆速率呈极显着的负相关;生物产量与全生育期有效积温、光合有效辐射和光能利用率均呈极显着的正相关,而与全生育期温度生产效率呈弱的负相关。因此,在稳定提高温光资源利用率、日产量和灌浆速率的基础上,通过延长生育期,尤其是灌浆结实期,来提高有效积温和光合有效辐射,进而提高干物质阶段积累量及生物学产量,是粳稻高生产力形成的重要途径与特征之一4、籼、粳超级稻主要品质性状年度间、类型间、品种间及其二因子间、三因子间的互作效应存在显着或极显着的差异。粳稻糙米率、精米率、整精米率、胶稠度、峰值黏度、热浆黏度、最终黏度和峰值黏度时间均高(长)于籼稻,垩白粒率、垩白大小、垩白度、长宽比、直链淀粉含量、蛋白质含量、崩解值和起始糊化温度均低(小)于籼稻,而消减值表现趋势不明显。相关分析表明,日平均温度、日最高温度和日最低温度对稻米加工品质和蒸煮食味品质具有负向作用,对稻米外观品质和营养品质具有正向作用,而日平均温差和日平均日照时数在米质性状的形成过程中作用不显着。因此,稳定形成高出米率、低垩白、低蛋白稻米、高黏度淀粉以及蒸煮出可口米饭是粳稻重要的品质特征之一。5、氮素吸收利用与转运特征方面:(1)粳稻平均实收产量、氮素吸收总量和百公斤籽粒吸氮量分别达10.89t/hm2、224.50kg/hm2、2.79kg,分别较籼稻高13.21%、32.74%、17.45%,差异极显着。粳稻不仅氮素积累量大,而且有效高效氮素吸收优势明显。(2)粳稻抽穗期和成熟期植株各器官以及整个生育期整株的含氮率均高于籼稻,差异显着或极显着。(3)粳稻氮素吸收利用率和农学利用率高于籼稻,但差异不显着;而粳稻氮素生理利用率、籽粒生产效率、干物质生产效率和氮肥偏生产力均低于籼稻,除氮素生理利用率外其他指标均达到显着或极显着水平。(4)成熟期,粳稻叶、茎、鞘含氮量所占比例均极显着地高于籼稻,而粳稻穗中含氮量所占比例则极显着低于籼稻,籼稻氮素收获指数极显着高于粳稻。(5)抽穗至成熟期,粳稻叶、茎、鞘氮素转运量、表观转运率和转运贡献率均小于籼稻,除鞘的氮素转运贡献率外其他指标均达显着或极显着水平。(6)籼稻高氮籽粒主要依靠抽穗前源器官中贮积的氮素的输出与转运,粳稻较高的氮素吸收总量则主要依靠生育中后期(拔节至成熟期)氮素的高速吸收。因此,在稳定生育前期(移栽至拔节期)氮素吸收的基础上,大幅提高生育中期和后期(拔节至成熟期)氮素吸收速率和氮素积累量,是稳定形成较高的氮素吸收总量及粳稻高产形成的关键。6、根系形态生理特征方面:(1)整个生育期,粳稻的根冠比、每条根长、发根数、发根体积、发根干重及颖花根流量、穗数、群体颖花量、结实率和实收产量均高于籼稻,而根直径、每穗粒数和千粒重低于籼稻,其中根冠比、每条根长、颖花根流量、穗数、每穗粒数、结实率和实收产量差异达显着或极显着水平;(2)粳稻抽穗前(含抽穗期)单茎根干重、总根长、根数、根体积和根系总吸收表面积及根密度均低于籼稻,但差异不显着,而成熟期这6个指标粳稻均显着或极显着高于籼稻;(3)粳稻拔节前单茎活跃吸收表面积和活跃吸收表面积比均小于籼稻,而拔节后(含拔节期)两者差异趋势与之相反,差异显着或极显着;(4)除拔节期群体根干重、拔节期和抽穗期群体根数外,其他群体形态生理特征指标粳稻均显着或极显着高于籼稻;(5)无论是单茎还是群体,粳稻抽穗后0-35d根系伤流量均显着或极显着高于籼稻;(6)粳稻0-10cm土层根系干重所占比例极显着低于籼稻,10cm以下土层根系干重占根系总干重的比例极显着高于籼稻,粳稻扎根更深,进一步强化了植株抗倒防早衰能力。与超级杂交籼稻相比,常规粳型超级稻抽穗后根系生长优势不断加大,特别是群体生长优势,成熟期粳稻所有根系形态生理特征指标均优于籼稻,是粳稻高产形成的重要原因和保障。7、抗倒支撑特征方面:(1)粳稻实收产量较籼稻高11.79%,差异极显着;基部0-20cm节间抗折力极显着高于籼稻、倒伏指数极显着低于籼稻,没有出现明显倒伏现象,而籼稻扬两优6号和两优培九田间表观倒伏率分别达12.35%、13.05%;(2)粳稻基部四个节间弯曲力矩均极显着小于籼稻、抗折力均极显着大于籼稻,最终粳稻基部第1至第4节间的倒伏指数均极显着低于籼稻;(3)粳稻各节间长度和株高以及基部节间外径、秆型指数、重心高和相对重心高度均小于籼稻,差异显着或极显着,而穗下节间长/秆长粳稻极显着大于籼稻;(4)粳稻六个伸长节间的茎秆粗度和茎壁厚度均小于籼稻,其中基部第1至第4伸长节间的茎秆粗度达到显着或极显着水平;(5)粳稻各节间茎秆干重均小于籼稻,两优培九各节间叶鞘干重极显着高于其他3个品种,且粳稻基部第2节间单位节间茎秆干重略高于籼稻,而基部第1、3、4、5、6节间粳稻单位节间茎秆干重均低于籼稻;(6)粳稻单穴固持力和抗弯阻力均显着或极显着大于籼稻,而按压恢复度显着或极显着小于籼稻。可见粳稻固持抗倒能力较强、籼稻抗倒恢复能力较强,且粳稻能协调达到高产与抗倒,这可能与其弯曲力矩小、抗折力大、株高矮、节间配置合理、重心低以及基部节间物质充实足等有关。这些可为江苏稻区以及同类生态稻区乃至整个南方适粳区实施新一轮的“籼改粳”提供参考。但在大面积推广应用中,还应切合当地自然和社会资源,坚持“宜粳则粳、宜籼则籼”。此外,“籼改粳”还存在品种耐热性不强、农资投入大、环境污染重、抗病虫性差、储备技术不足、生产习惯不符、部分地区生产设施落后等问题,还有待于进一步深入研究与攻关。

朱永川,熊洪,徐富贤,郭晓艺,张林,刘茂,周兴兵[8](2013)在《再生稻栽培技术的研究进展》文中研究说明根据已报到的研究材料,综述了中国南方稻区再生稻的研究进展。所有的水稻品种均可获得一定的再生稻产量,常规品种的再生稻产量明显低于杂交水稻的再生稻产量,而三系杂交水稻的再生稻产量又较两系杂交稻的再生稻产量低;留桩高度各地因组合不同和生态条件不同而有一定的差异,一般为1040 cm;各节间腋芽在温度、光照和水分适宜的条件下均能较好的萌发,施用赤霉素和细胞分裂素均能有效促进腋芽的萌发,并能提高再生芽的成活率;再生稻腋芽萌发及成活的最适温度为24.527.0℃,相对湿度为81%85%,‘汕优63’再生稻结实率≥70%的临界低温指标是:连续5日平均气温≥21℃;头季稻齐穗期剑叶SPAD值、叶片含氮量和群体单位面积的总颖花量3个因子可以用来预测再生稻高产的促芽肥经济施用量;超级杂交稻也可获得较好的再生稻产量。再生稻的栽培技术还可进一步的研究。

刘文祥[9](2013)在《适应区域气候变化的双季稻高产群体调控技术研究》文中研究指明水稻是中国重要的粮食作物之一,气候环境的变化对水稻产生了重大影响。因此,明确区域气候变化特点和开展适应气候变化的群体调控技术研究很有必要。本研究分析了长江中游地区50个气象台站近50年的双季早晚稻各生育时期的农业气候资源变化特点,并在此基础上运用不同氮肥水平(NO-施纯氮0kg/hm2; N90-施纯氮90kg/hm2;N135-施纯氮135kg/hm2; N180-施纯氮180kg/hm2; N225-施纯氮225kg/hm2)、密度(D45-每公顷移栽45万穴;D30-每公顷移栽45万穴;D22-每公顷移栽45万穴;D16-每公顷移栽45万穴)和每穴栽插苗数(B1-每穴1粒谷苗;B2-每穴2粒谷苗;B3-每穴3粒谷苗;B4-每穴4粒谷苗)两两组配调控群体,并通过对三种调控措施作用效果的研究,最终形成早晚稻不同群体调控理论和技术体系,为双季早晚稻适应气候变化的高产高效栽培提供理论和技术依托。得到结论如下:1、探明了长江中游地区双季早晚稻各生育时期农业气候资源变化特征该地区早稻生长期内各生育期的平均温度、平均日最高温度、平均日最低温度、大于10℃积温等农业气侯资源均有一定幅度的增加;其中移栽返青分蘖期的平均温度、平均日最高温度、平均日最低温度等增幅最大,平均增温速率分别达1.05℃、1.34℃、0.84℃/10a;大于10℃积温平均增幅最明显的也是移栽返青分蘖期,增温速率为35.48℃/10a,其次是播种育秧期,为26.48℃/10a;移栽返青分蘖期的日照时数表现为增加,其它时期均减少;降水变化趋势除播种育秧期、移栽返青分蘖期下降外,其它时期均略有增加,而生殖生长期降水量的增加不利于灌浆结实。晚稻生长期内温度变化趋势为持续升高,抽穗期的平均温度、平均日最高温度、平均日最低温度的平均增速分别为0.42、0.34、0.57℃/10a,灌浆成熟期的平均温度、平均日最高温度、平均日最低温度的平均增幅分别为0.44、0.48、0.46℃/10a;晚稻播种育秧期、移栽返青分蘖期、孕穗期、抽穗期以及灌浆成熟期的日照时数均下降,其下降速率依次为:-14.86、-31.43、-31.08、-5.16、-7.87/10a;晚稻生长期内降水量除抽穗期和灌浆成熟期为减少外其它时期均增加,其气候倾向率依次为:3.76、21.56、6.76、-5.22、-18.40mm/10a,气候变化对晚稻的不利主要表现在群体构建的关键时期—移栽返青分蘖期和孕穗期的低温、寡照和降水偏多。因此,该区域气候变化对早稻是利大于弊,对晚稻而言则表现为制约其高产潜力的发挥。2、不同密度和栽插苗数调控能提高区域双季早晚稻适应气候变化的能力早稻剑叶光合速率随密度的增加而增加;栽插苗数单因对光合速率的影响表现为:B3>B4>B2;D45B3处理的剑叶光合速率、冠层叶片SPAD值、冠层太阳光截获率均高于其它处理。晚稻剑叶光合速率则随密度的增加而下降,不同栽插苗数处理表现为:B2>B1>B3,密度和在栽插苗数互作以D22B2处理的光合速率最高;晚稻冠层叶片SPAD值随密度、栽插苗数的增加均会降低,群体冠层太阳光截获率以D22B2最高。不同密度和栽插苗数调控对早晚稻产量及其构成因子的影响为:早稻不同密度处理的产量关系为D30>D45>D22,晚稻各密度处理产量依次为D22>D30>D16;早晚稻产量都跟栽插苗数呈单峰曲线关系,早晚稻分别是B3、B2最高。在本试验条件下:早稻在移栽密度33×104穴/hm2的基础上配合每穴3个栽插苗数,晚稻在移栽密度为26×104穴/hm2的基础上搭配每穴1个载插苗数能发挥高产潜力,获得高产。3、氮密调控对区域气候变化下的双季稻群体、产量及其构成因子有明显效果不同氮肥水平的早稻叶面积指数在生长后期N135处理最高,叶面积指数和干物质积累均会随密度增加而增加,栽插密度对早稻冠层截获率的影响表现为D30最高;氮肥用量和密度对早稻穗粒数、结实率影响不大,对有效穗和千粒重影响较大;氮肥和密度互作对有效穗影响达显着水平;施氮水平为135kg/m2时早稻产量最高,其次是施氮量180kg/hm2的处理。晚稻冠层光能截获是N180处理的要高于其他处理;不同密度处理以D22处理最高;不同氮肥水平的剑叶光合速率则以N180处理最高。氮肥对晚稻有效穗和穗粒数影响较大;晚稻有效穗数随栽插密度的增加而增加,但每穗粒数却与之相反;氮肥对晚稻产量的影响以施氮量为180kg/hm2最高;密度水平对产量的影响表现为:D30最高,D16最低,表明产量随密度的增加而增加。在区域气候变化下,双季早稻在密度和施氮量分别为36.60×104穴/hm2和141.20kg/hm2,可获最高为10359.30kg/m2;晚稻在氮肥水平为190.30kg/hm2,移栽密度为23.60×104穴/hm2时,可获得最高产。4、区域气候变化下氮肥和栽插苗数对双季稻有明显调控效果早稻叶面积指数随栽插苗数的增加而增加,孕穗期每穴3个栽插苗数处理的叶面积指数要比2个栽插苗数处理的高0.3;不同氮肥水平在齐穗期以前是N135处理最高,齐穗后N180处理最高;早稻冠层光能截获率随氮肥水平的提高而增加,栽插苗数对冠层光能截获的影响效果为B3>B2。晚稻群体叶面积指数则随氮肥水平的增加而增加;不同栽插苗数处理间的叶面积指数为B2大于B1。早晚稻有效穗均随氮肥水平的增加而增加,但每穗粒数与氮肥水平间却呈单峰曲线关系;氮肥和栽插苗数互作对每穗粒数的影响,早稻为N135B3最高,晚稻则是N180B1最高。本试验结果表明,不同氮肥水平的早稻产量以N135最高,其次是N180;早稻不同栽插苗数处理的产量表现为B3>B2。晚稻产量以N180处理最高,但N135的产量反而比N225的高;每穴1个栽插苗数的产量要大于2个栽插苗数处理的;氮肥和栽插苗数互作则是N180B1的产量最高,NOB1最低。5、提出了适应区域气候变化的双季早晚稻不同群体调控技术体系根据区域双季早晚稻各生育时期气候变化的差异,提出了适应区域气候变化的双季早晚稻不同群体调控技术体系:双季早晚稻的氮肥施用量分别在141.20-145.20、184.70-190.30kg/hm2之间,移栽密度分别为33.40×104-36.60×104、23.60×104-25.80×104穴/hm2之间,早晚稻分别搭配每穴栽插3、1粒谷苗,是高产高效的栽培方式。

蒋鹏[10](2013)在《不同生态地点和施氮水平下超级稻产量表现及其养分吸收积累规律研究》文中进行了进一步梳理施肥是水稻获得高产的重要措施,但长期大量施用化肥,尤其是氮肥,不仅会导致氮肥利用率降低,而且还会引起环境污染。本研究通过在不同生态地点和不同施氮水平条件下,研究超级稻的产量形成特点及其不同产量水平下超级稻的氮肥利用率和养分吸收积累规律,探明中国超级稻生产能否实现高产与氮高效利用的协调统一。据此,于2011~2012年在湖南长沙、广西宾阳、广东怀集、海南海口、贵州兴义进行多年多点联合试验,其中海口、长沙和兴义为一季稻,宾阳和怀集为双季稻。试验采用裂区设计,以氮肥为主区,设施氮量为225、112.5、0kg/hm2,分别记为N1N2N3;以品种为副区,超级杂交稻两优培九、Y两优1号和超级常规稻玉香油占、高产常规稻黄华占为材料。主要结果如下:1超级稻产量表现不同生态地点下超级稻产量差异显着,其中以兴义点的产量最高,与长沙、海口、宾阳、怀集相比、分别增产了22.86%、36.79%、83.20%、160.55%。超级稻产量基因型差异显着,在一季稻试验点,超级杂交稻产量均显着高于超级常规稻,平均高了10.5%,双季稻试验点,超级杂交稻产量优势不明显。不同施肥处理下超级稻产量差异显着,其中,2011年宾阳点以N2处理高于N1处理;长沙和怀集点则是以N1处理高于N2;2012年,除怀集早稻和海口点外,兴义、长沙、怀集晚稻均以N2处理高于N1处理。2超级稻产量构成不同生态地点对超级稻的产量构成影响显着。有效穗、每穗粒数、颖花量、结实率均以兴义点较高,怀集点较低。不同生态地点间超级杂交稻的粒重差异较小,杂交稻与常规稻的粒重差异较大,但两优培九与Y两优1号、玉香油占与黄华占间的粒重差异较小。超级稻的产量构成基因型差异显着,每穗粒数以玉香油占最多,黄华占最少,有效穗以黄华占最多,玉香油占最少。相关分析表明,超级稻收获产量与有效穗、颖花量、每穗粒数、结实率呈显着正相关。3超级稻干物质生产及收获指数不同生态地点对超级稻的干物质生产量影响显着。齐穗期和成熟期干物质生产量,以兴义点较高,怀集点较低。干物质生产量基因型差异显着,在产量大于9t hm-2的试验点,超级杂交稻显着高于超级常规稻。相关分析还表明,超级稻齐穗期、成熟期和齐穗期至成熟期的干物质生产量与收获产量呈高度正相关。不同生态地点下收获指数差异显着,以兴义点最高,为0.553~0.572;不同施肥处理下收获指数差异显着,其中以N3处理的收获指数较高。相关分析表明,超级稻的收获产量与收获指数呈显着正相关。4超级稻氮、磷、钾养分吸收量不同生态地点、施肥处理对超级稻植株氮、磷、钾养分吸收量影响显着;氮吸收量以兴义点最高,分别比长沙、海口、宾阳和怀集高了23.5%、98.2%、68.7%、175.6%;植株磷、钾的吸收量以长沙点较高,分别为4.3~4.7g m-2、20.5-21.7g m-2。除2012年宾阳早稻和怀集晚稻外,不同施肥处理间超级稻植株的氮、磷、钾吸收量,均一致呈N1>N2>N3。5超级稻氮、磷、钾养分收获指数超级稻的氮、磷、钾收获指数不同生态地点、施肥处理间差异显着。氮、磷的收获指数以兴义点较高,平均分别为0.690和0.777,钾收获指数以海口点较高,平均为0.135。随着产量水平的提高,氮、磷收获指数呈升高趋势。不同施肥处理下超级稻氮、磷、钾的收获指数以N3处理较高,N1处理较小。相关分析表明,收获产量与成熟期氮、磷的收获指数呈显着正相关,与钾收获指数关系不显着。超级稻氮、磷、钾收获指数基因型变化趋势不明显。6超级稻每生产1000kg稻谷氮、磷、钾养分需要量不同生态地点对超级稻每生产1000kg稻谷氮、磷、钾的需要量影响显着。需氮量以怀集点最低,为13.5~16.9kg,长沙点最高,为22.0~23.6kg(除2011宾阳点外);需磷量以兴义点最低,宾阳点较高;需钾量以兴义点和怀集点较低。相关分析表明,收获产量与每生产1000kg稻谷氮、磷、钾的需要量呈显着负相关。7超级稻氮肥利用率不同生态地点、施肥处理对超级稻氮肥利用率有显着影响。氮肥农学利用率以怀集点较高,氮肥偏生产力和氮肥吸收利用率以兴义点较高。不同施肥处理超级稻的氮肥农学利用率、氮肥偏生产力、氮肥吸收利用率均一致以N2大于N1。不同产量水平下,超级稻的氮肥利用率,随着产量水平的升高,呈增加趋势。综上所述,不同生态地点、施肥处理、超级稻品种间的产量及氮肥利用率差异显着。超级稻产量最高的兴义点,其肥料利用率也较高,证明超级稻可以实现高产与养分高效利用协调统一,在超级稻生产上,应按照超级稻种植区域,确定适合的目标产量,采用与目标产量相一致的定量化栽培技术和群体发育调控技术,实现高产稳产高效的超级稻生产。同时,氮素高效利用率也应作为超级稻品种选育的指标。

二、一季超级稻高效栽培气象条件研究(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、一季超级稻高效栽培气象条件研究(论文提纲范文)

(1)中国特色水稻栽培学发展与展望(论文提纲范文)

1 水稻栽培科技70年发展回顾
    1.1 第一阶段(20世纪50—60年代)
    1.2 第二阶段(20世纪70年代)
    1.3 第三阶段(20世纪80年代)
    1.4 第四阶段(20世纪90年代)
    1.5 第五阶段(21世纪以来)
2 改革开放以来水稻栽培领域取得的若干科技成就
    2.1 水稻叶龄模式栽培理论及技术
    2.2 水稻群体质量及其调控
    2.3 水稻精确定量栽培
    2.4 水稻轻简化栽培
        2.4.1 少免耕栽培与抛秧
        2.4.2 直播栽培
        2.4.3 再生稻栽培
    2.5 水稻机械化栽培
    2.6 水稻超高产栽培
    2.7 水稻优质栽培
    2.8 水稻绿色栽培
    2.9 水稻逆境栽培
        2.9.1 温度胁迫
        2.9.2 水分胁迫
        2.9.3 O3胁迫
        2.9.4 盐分胁迫
    2.1 0 水稻区域化栽培
        2.1 0. 1 东北寒地粳稻栽培
        2.1 0. 2 长三角地区粳稻栽培
        2.1 0. 3 南方双季稻栽培
        2.1 0. 4 西南高湿寡照稻区杂交稻栽培
3 未来水稻栽培领域的创新方向
    3.1 绿色优质丰产协调规律与广适性栽培
    3.2 多元专用稻优质栽培
    3.3 超高产提质协同规律及实用栽培
    3.4 直播稻、再生稻稳定丰产优质机械化栽培
    3.5 智能化、无人化栽培

(2)常规稻和杂交稻在节本栽培条件下的农学表现及能量与经济分析(论文提纲范文)

摘要
Abstract
缩略语表
1.前言
    1.1 中国水稻生产的发展与现状
        1.1.1 水稻生产的发展变化
        1.1.2 水稻生产面临的挑战
    1.2 中国水稻品种改良历程
    1.3 栽培管理对水稻生产的影响
        1.3.1 氮肥管理和氮素利用效率
        1.3.2 水分管理和水分利用效率
        1.3.3 秧龄
        1.3.4 移栽密度
    1.4 能量分析和经济分析
        1.4.1 能量投入和能量利用效率
        1.4.2 经济成本和经济效益
    1.5 研究的目的与意义
2 材料与方法
    2.1 试验地点
    2.2 供试材料
    2.3 试验设计
    2.4 测定项目与方法
        2.4.1 生育进程
        2.4.2 农艺性状与生长特性
        2.4.3 产量及产量构成因素
        2.4.4 氮素积累与利用效率
        2.4.5 能量投入-产出与能量利用效率
        2.4.6 生产成本与经济效益
    2.5 数据处理分析
3.结果与分析
    3.1 气象条件
    3.2 作物生育进程
    3.3 常规稻和杂交稻产量和产量构成对节本栽培的响应
        3.3.1 节本栽培对常规稻和杂交稻产量的影响
        3.3.2 常规稻和杂交稻产量稳定性分析
        3.3.3 常规稻和杂交稻在各处理中的日产量
        3.3.4 节本栽培对常规稻和杂交稻产量构成因素的影响
        3.3.5 常规稻和杂交稻产量性状间的相关分析
    3.4 常规稻和杂交稻干物质积累、收获指数和干物质转运特性对节本栽培的响应
        3.4.1 常规稻和杂交稻不同时期干物质积累特性
        3.4.2 常规稻和杂交稻的生物量和收获指数
        3.4.3 常规稻和杂交稻的干物质转运特性
        3.4.4 干物质积累、转运以及收获指数与产量的相关分析
    3.5 常规稻和杂交稻群体特征对节本栽培的响应差异
        3.5.1 常规稻和杂交稻的茎蘖动态
        3.5.2 常规稻和杂交稻的成穗率
        3.5.3 常规稻和杂交稻的单茎叶面积
        3.5.4 常规稻和杂交稻的叶面积指数
        3.5.5 常规稻和杂交稻的作物生长速率
    3.6 常规稻和杂交稻氮素积累、转运和氮素利用效率对节本栽培的响应
        3.6.1 常规稻和杂交稻不同时期氮素浓度和氮素积累
        3.6.2 常规稻和杂交稻的氮素转运特性
        3.6.3 常规稻和杂交稻的氮素利用效率
    3.7 不同栽培管理对能量投入和能量利用效率的影响
        3.7.1 不同栽培处理的能量投入
        3.7.2 不同栽培处理的能量产出
        3.7.3 不同栽培处理的能量利用效率
    3.8 不同栽培管理对经济效益的影响
        3.8.1 不同栽培处理的经济投入和产出
        3.8.2 不同栽培处理的净收益
4.讨论
    4.1 常规稻和杂交稻农学表现对节本栽培的响应
    4.2 常规稻和杂交稻氮素利用对节本栽培的响应
    4.3 常规稻和杂交稻能量平衡对节本栽培的响应
    4.4 常规稻和杂交稻经济性状对节本栽培的响应
    4.5 研究展望
5.结论
参考文献
附录 在读期间发表论文情况
致谢

(3)不同氮肥水平下超级杂交稻与普通杂交稻农艺表现的比较研究(论文提纲范文)

摘要
Abstract
1 前言
    1.1 中国水稻生产现状
    1.2 水稻高产育种历程
    1.3 水稻生产中的倒伏现象
    1.4 水稻高产栽培中氮肥施用及氮素利用效率
    1.5 农业绿色发展与水稻绿色生产
    1.6 本研究的目的与意义
2 材料与方法
    2.1 试验地点和材料
    2.2 试验设计
    2.3 指标测定
        2.3.1 农艺性状与生长特性
        2.3.2 产量及产量构成因子测定
        2.3.3 干物质转运相关指标计算方法
        2.3.4 倒伏性状相关指标
        2.3.5 氮素积累与利用效率
    2.4 数据分析
3 结果
    3.1 气象条件
    3.2 不同氮肥处理下各水稻品种的生育期
    3.3 不同氮肥处理下各水稻品种的产量及产量稳定性
    3.4 不同氮肥处理下各水稻品种的产量构成因子
    3.5 不同氮肥处理下各水稻品种的干物质积累及转运特性
    3.6 不同氮肥处理下各水稻品种的叶面积特性
    3.7 不同氮肥处理下各水稻品种的抗倒伏特性
        3.7.1 目测倒伏评分
        3.7.2 倒伏指数
        3.7.3 其它倒伏相关指标及其与倒伏指数的关系
    3.8 不同氮肥处理下各水稻品种的氮素积累和利用效率
        3.8.1 抽穗期和成熟期各器官氮浓度
        3.8.2 氮素利用效率
    3.9 水稻品种抗倒伏特性与氮素利用效率的关系
4 讨论
    4.1 不同氮肥处理下水稻品种产量表现
    4.2 不同氮肥处理下水稻品种生长发育特性
    4.3 水稻品种抗倒伏能力差异
    4.4 不同氮肥处理下水稻品种氮素积累与利用
    4.5 水稻品种抗倒伏能力与氮素利用效率的关系
    4.6 水稻生产减少氮肥施用对生态环境的影响
5 结论
参考文献
致谢

(4)减氮背景下超高产水稻品种产量和氮肥利用效率的农学与生理研究(论文提纲范文)

摘要
ABSTRACT
缩略语表
第一章 前言
    1 中国水稻品种改良进程
        1.1 水稻品种类型的变化
        1.2 水稻产量构成因子的变化
        1.3 水稻单产的变化
    2 水稻产量的形成
        2.1 水稻产量形成与产量构成因子
        2.2 水稻产量形成与生物量和收获指数
        2.3 水稻产量形成与干物质生产和转运
        2.4 水稻产量形成与根系
    3 氮在水稻生产中的作用及中国稻田氮肥利用现状
        3.1 氮对水稻产量的影响
        3.2 氮对水稻产量构成因素的影响
        3.3 中国稻田氮肥利用现状
    4 水稻素氮利用效率
        4.1 氮素利用效率的评价指标
        4.1.1 不设立无氮区
        4.1.2 设立无氮区
        4.2 水稻对氮肥的吸收特性
        4.3 水稻NUE差异
        4.3.1 水稻NUE的品种间差异
        4.3.2 水稻NUE的类型间差异
        4.3.3 与水稻NUE有关的农学和生理性状
    5 有关水稻产量和NUE还需进一步探索的科学问题
    6 本研究的目的和意义
第二章 籼型超级杂交稻在减氮背景下的产量与NUE的农学和生理研究
    1 材料与方法
        1.1 试验设计与田间管理
        1.2 测定项目与方法
        1.2.1 生育进程
        1.2.2 农艺性状与生长特性
        1.2.3 光照拦截动态
        1.2.4 SPAD值测定
        1.2.5 产量及产量构成因素
        1.2.6 氮素积累与利用效率
        1.3 数据处理分析
    2 结果与分析
        2.1 气象条件
        2.2 不同水稻品种的生育期
        2.3 不同类型水稻品种的产量及其产量构成
        2.4 不同类型水稻品种产量性状间的相关分析
        2.5 不同类型水稻品种的收获指数、干物质积累与转运特性
        2.5.1 关键生育期的干物质积累和成熟期收获指数
        2.5.2 干物质转运特性
        2.5.3 作物生长速率
        2.6 不同类型水稻品种的植株生长特性
        2.6.1 分蘖特性
        2.6.2 分蘖速率与群体作物生长速率的关系
        2.6.3 叶面积生长特性
        2.6.4 叶面积生长速率与群体作物生长速率的关系
        2.6.5 营养生长期的光照拦截特性
        2.6.6 花后SPAD值的变化
        2.7 不同类型水稻品种的氮素积累和利用效率
        2.7.1 齐穗期和成熟期各器官氮浓度
        2.7.2 关键生育期的氮素积累
        2.7.3 氮素转运特性
        2.7.4 氮素利用效率
        2.7.5 NUE与产量及产量构成的关系
        2.7.6 NUE与植株生长特性的关系
    3 讨论
        3.1 籼型超级杂交稻在减氮条件下的产量表现及其农学和生理特性
        3.2 籼型超级杂交稻在减氮条件下的氮素积累、转运及NUE表现
        3.3 不同氮肥处理下水稻NUE相关性状
    4 结论
第三章 籼粳杂交稻在减氮背景下的产量和NUE的农学与生理研究
    1 材料与方法
        1.1 试验设计与田间管理
        1.2 测定项目与方法
        1.2.1 生育期记载
        1.2.2 叶面积和干物质
        1.2.3 颖花分化与退化
        1.2.4 冠层结构特性
        1.2.5 产量和产量构成
        1.2.6 植株全氮含量的测定
        1.3 其它数据计算
        1.4 数据处理分析
    2 结果与分析
        2.1 气象条件
        2.2 产量及其构成
        2.3 甬优4949 大穗的形成
        2.3.1 颖花分化与退化
        2.3.2 颖花分化期单茎干物质和氮素积累
        2.3.3 颖花分化末期至齐穗期的作物生长速率
        2.3.4 群体颖花生产效率
        2.4 干物质生产及与干物质生产有关的植株性状
        2.4.1 生育期和干物质积累
        2.4.2 冠层光照拦截和光能利用率
        2.4.3 冠层内光照和氮素的垂直分布
        2.4.4 LAI降低速率和绿叶面积持续期
        2.5 粒叶比和收获指数
        2.6 氮素积累和利用效率
        2.7 NUEg与 NHI、HI和成熟期叶片、饱粒氮素浓度的相关性
    3 讨论
        3.1 籼粳杂交稻甬优4949 在减氮条件下的产量和NUE表现
        3.2 颖花生产效率对籼粳杂交稻甬优4949 产量和NUE的影响
        3.3 花后干物质和氮素积累对籼粳杂交稻甬优4949 产量和NUE的影响
        3.4 冠层特性对籼粳杂交稻甬优4949 产量和NUE的影响
        3.5 粒叶比和HI对籼粳杂交稻甬优4949 产量和NUE的影响
    4 结论
第四章 结语
    1 研究总结
    2 研究创新点
    3 研究中存在的问题
    4 研究展望
参考文献
附录
致谢

(5)中国水稻产量差评估及长江中下游地区增产途径探究(论文提纲范文)

摘要
Abstract
缩略语表
1 前言
    1.1 中国水稻生产现状
        1.1.1 水稻种植面积与产量
        1.1.2 水稻主要种植区域及稻作模式
    1.2 潜在产量及其影响因素
        1.2.1 潜在产量的定义
        1.2.2 温度对水稻潜在产量的影响
        1.2.3 辐射对水稻潜在产量的影响
        1.2.4 品种改良对潜在产量的影响
    1.3 水稻潜在产量的估算
        1.3.1 潜在产量估算方法
        1.3.2 作物生长模型模拟
    1.4 产量差及研究进展
        1.4.1 实收产量和产量差
        1.4.2 产量差的研究进展
        1.4.2.1 全球农作物产量差
        1.4.2.2 中国水稻产量差
    1.5 产量差的评估
        1.5.1 GYGA方法评估作物产量差
        1.5.2 农业气候区的划分
        1.5.3 数据年限的选择准则
    1.6 水稻增产途径初探
        1.6.1 实收产量的提升途径
        1.6.2 潜在产量的提升途径
    1.7 本研究的目的与意义
2 ORYZAv3模型校正与检验
    2.1 材料与方法
        2.1.1 数据来源
        2.1.1.1 气象数据
        2.1.1.2 作物数据
        2.1.2 ORYZA v3模型的调试和校正
        2.1.3 数据分析和评价方法
    2.2 结果与分析
        2.2.1 模型参数校正结果
        2.2.2 模拟值和实测观测值的对比验证
    2.3 讨论
    2.4 小结
3 中国水稻产量差的估算及2030年水稻供需平衡情景预测
    3.1 材料与方法
        3.1.1 数据来源
        3.1.2 代表性气象站点(RWS)的选取
        3.1.3 单双季稻区的划分标准
        3.1.4 实收产量修正
        3.1.5 产量升区方法
        3.1.6 不同省份的总产潜力及当前总产量的预测
        3.1.7 中国2030年水稻供需平衡情景预测
        3.1.8 数据分析和评价方法
    3.2 结果与分析
        3.2.1 代表性气象站点(RWS)的选取
        3.2.2 各气象站点的潜在产量、实收产量及产量差
        3.2.3 各农业气候区的潜在产量、实收产量及产量差
        3.2.4 全国水平潜在产量、实收产量及产量差
        3.2.5 中国水稻总产潜力
    3.3 讨论
        3.3.1 中国水稻潜在产量及产量差
        3.3.2 单双季稻潜在产量及产量差
        3.3.3 水稻主产省份的产量及产量差
        3.3.4 中国2030年水稻供需平衡情景预测
    3.4 小结
4 籼粳杂交稻在长江中下游单季稻区的潜在产量模拟
    4.1 材料与方法
        4.1.1 气象站点数据来源
        4.1.2 ORYZA v3模型的调试与校正
        4.1.3 产量升区方法
    4.2 结果与分析
        4.2.1 ORYZA v3模型的校正结果
        4.2.2 甬优12号在不同气象站点的产量及生育期比较
        4.2.3 籼粳杂交稻对长江中下游地区潜在产量的影响
        4.2.4 籼粳杂交稻对长江中下游地区总产潜力的影响
    4.3 讨论
        4.3.1 籼粳杂交稻在长江中下游地区推广的可行性
        4.3.2 籼粳杂交稻生育期及接茬问题
    4.4 小结
5 长江中下游地区温光资源配置对水稻产量和稻米品质的影响
    5.1 材料与方法
        5.1.1 试验设计
        5.1.2 测定指标
        5.1.2.1 气象数据
        5.1.2.2 土壤取样
        5.1.2.3 分蘖动态
        5.1.2.4 不同时期生长动态取样
        5.1.2.5 测产
        5.1.2.6 米质分析
    5.2 结果与分析
        5.2.1 不同播期水稻生长期间温度的年际变化
        5.2.2 长江中下游地区温光环境特性分析
        5.2.3 全生育期积温、累积辐射与产量在不同播期间的差异
        5.2.4 播期对温光资源利用效率的影响
        5.2.5 不同生长阶段温光配置与相对产量的关系
        5.2.5.1 不同生长阶段的划分
        5.2.5.2 不同播期在各生长阶段的温光配置
        5.2.5.3 相对产量的计算
        5.2.5.4 各生长阶段水稻温度、辐射与相对产量的相关性
        5.2.5.5 各生长阶段水稻温度、辐射与相对产量的偏相关分析
        5.2.5.6 各生长阶段温度与水稻生长、产量构成和品质相关因子的相关性
        5.2.6 不同温光配置对水稻产量的影响
        5.2.7 温光配置对稻米品质的影响
    5.3 讨论
        5.3.1 长江中下游地区的辐射特征
        5.3.2 最适水稻温度、辐射范围划分
        5.3.3 温光配置与资源利用效率的关系
    5.4 小结
6 总结
    6.1 主要研究结果
        6.1.1 ORYZA v3模型校正与检验
        6.1.2 中国不同地域水稻产量差的预测及2030年水稻供需平衡情景预测
        6.1.3 籼粳杂交稻在长江中下游中稻地区的潜在产量模拟
        6.1.4 长江中下游地区的温光资源配置探究
    6.2 研究的创新点
    6.3 研究存在的问题
    6.4 研究展望
参考文献
攻读博士学位期间发表论文情况
致谢

(6)甬优系列籼粳杂交稻生产力优势与相关生理生态特征研究(论文提纲范文)

符号说明
中文摘要
ABSTRACT
第一章 文献综述
    1 研究的背景、目的与意义
    2 国内外研究进展
        2.1 籼粳亚种间杂交稻品种选育演进历程
        2.2 甬优系列籼粳杂交稻的育成、应用与发展态势
        2.2.1 品种综合生产潜力不断提高
        2.2.2 基本营养生长型品种(组合)不断推出、应用种植区域持续拓展
        2.3 甬优系列籼粳亚种间杂交稻与对照类型主要生理生态特征研究进展
        2.3.1 甬优系列籼粳亚种间杂交稻主要生理、生态特征进展
        2.3.2 不同类型非亚种间杂交稻品种若干生理生态特征
    3 研究选题的提出
    4 研究思路与内容
        4.1 研究思路
        4.2 研究内容
    参考文献
第二章 籼粳杂交稻品种产量及其构成因素特征的研究
    0 前言
    1 材料与方法
        1.1 供试材料与地点
        1.2 试验设计与栽培管理
        1.3 测定项目与方法
        1.3.1 茎蘖动态
        1.3.2 籽粒灌浆动态
        1.3.3 产量及穗部性状
        1.4 数据计算和统计分析
        1.4.1 数据计算与统计方法
        1.4.2 数据处理
    2 结果与分析
        2.1 不同类型水稻品种产量及其构成因素的差异
        2.2 不同类型水稻品种产量构成因素形成的差异
        2.2.1 茎蘖组成特征
        2.2.2 穗部性状特征
        2.2.3 籽粒灌浆特征
    3 讨论
        3.1 关于长江下游地区不同类型水稻品种生产力的差异
        3.2 关于长江下游地区不同类型水稻品种产量构成因素形成特征的差异
    4 结论
    参考文献
第三章 籼粳杂交稻物质积累与转运特征研究
    0 前言
    1 材料与方法
        1.1 供试材料
        1.2 试验地点
        1.3 试验设计与栽培管理
        1.4 测定项目与方法
        1.4.1 茎蘖动态
        1.4.2 干物质和叶面积
        1.4.3 产量
        1.5 数据计算和统计分析
    2 结果与分析
        2.1 群体物质生产与产量的关系
        2.2 主要生育期物质生产特征
        2.2.1 主要生育期叶面积动态
        2.2.2 主要生育期干物质动态
        2.3 主要生育阶段光合物质生产特征
        2.3.1 生育前期光合物质生产特征
        2.3.2 生育中期光合物质生产特征
        2.3.3 生育后期光合物质生产特征
        2.4 生育中后期物质分配与转运
        2.4.1 生育中后期物质分配比例
        2.4.2 生育中后期物质分配量
        2.4.3 生育中后期物质输出与转化特征
    3 讨论
        3.1 水稻品种生物学产量与经济产量的关系
        3.2 甬优系列超级籼粳杂交稻的主要生育阶段物质积累特征
        3.3 甬优系列超级籼粳杂交稻的抽穗后物质输出与转化特征
    4 结论
    参考文献
第四章 籼粳杂交稻灌浆特征
    0 前言
    1 材料与方法
        1.1 供试材料
        1.2 试验设计
        1.3 测定项目与方法
        1.3.1 灌浆指标的测定
        1.3.2 群体中期物质积累与后期物质转运指标测定
        1.3.3 光合生产指标的测定
        1.3.4 根系形态生理指标(根密度和根尖数)的测定
        1.3.5 温光资料的获取
        1.4 数据计算与统计分析
    2 结果与分析
        2.1 产量及其构成
        2.2 群体灌浆特性
        2.2.1 群体灌浆特性
        2.2.2 籽粒充实特征
        2.3 光合物质生产特征
        2.3.1 主要生育期光合生产与转运特性
        2.3.2 灌浆中期根系形态生理特征
        2.4 暗周期累积、变化与利用
        2.5 温度资源累积、变化与利用
    3 讨论
        3.1 关于钵苗栽培条件下甬优系列籼粳杂交稻群体灌浆特征
        3.2 关于钵苗栽培条件下甬优系列籼粳杂交稻灌浆充实的生理生态基础
    4 结论
    参考文献
第五章 籼粳杂交稻的冠层结构与光合特性
    0 前言
    1 材料与方法
        1.1 试验地点
        1.2 供试材料
        1.3 试验设计与栽培管理
        1.4 测定项目与方法
        1.4.1 株型指标
        1.4.2 冠层叶面积分布
        1.4.3 冠层内光照强度分布
        1.4.4 叶片光合特性相关指标
        1.4.5 干物质量、叶面积和产量
        1.5 数据计算与统计分析
        1.5.1 叶面积密度函数的拟合
        1.5.2 光照分布函数的拟合
        1.5.3 消光系数的测定
    2 结果与分析
        2.1 主要冠层结构与光合特性性状的方差分析
        2.2 不同类型水稻冠层结构特征
        2.2.1 叶片大小
        2.2.2 受光姿态
        2.2.3 不同类型水稻品种群体叶面积密度分布特征
        2.2.4 不同类型水稻品种群体内光照分布特征
        2.3 不同类型水稻品种光合生产特征
        2.3.1 群体叶面积指数、有效叶面积率及高效叶面积率
        2.3.2 颖花/叶、实粒/叶
        2.3.3 生物产量、经济产量与经济系数
        2.3.4 叶绿素含量、PS Ⅱ实际光化学效率及净光合速率
        2.3.5 MDA含量与膜质过氧化酶活性
    3 讨论
        3.1 关于甬优系列籼粳杂交稻的冠层结构特征
        3.2 关于甬优系列籼粳杂交稻的光合特征
    4 结论
    参考文献
第六章 籼粳杂交稻根系形态与生理特征
    0 前言
    1 材料与方法
        1.1 供试材料
        1.2 试验地点
        1.3 试验设计与栽培管理
        1.4 测定项目与方法
        1.4.1 根系形态指标的测定
        1.4.2 根系生理指标的测定
        1.5 数据计算与统计分析
    2 结果与分析
        2.1 根系形态特征
        2.1.1 主要生育期地上部干重、根系干重和根冠比
        2.1.2 主要生育期根数、根长、根表面积和根体积
        2.1.3 抽穗期不定根、粗分支根和细分支根数占总根尖数的比例
        2.1.4 抽穗期不同土层根系干重占总干重的比例
        2.2 根系生理特征
        2.2.1 主要生育期单茎和群体总吸收面积与活跃吸收面积
        2.2.2 抽穗后根系氧化力、还原力及其变化
        2.2.3 抽穗后群体根系伤流强度及其变化
    3 讨论
        3.1 关于甬优系列籼粳杂交稻根系的群体生长特征
        3.2 关于甬优系列籼粳杂交稻根系的分支结构特征
        3.3 关于甬优系列籼粳杂交稻根系的在土层中的分布特征
        3.4 关于甬优系列籼粳杂交稻根系生育中后期的生理特征
    4 结论
    参考文献
第七章 籼粳杂交稻茎秆的抗倒性评价及成因分析
    0 引言
    1 材料与方法
        1.1 供试材料
        1.2 试验地点
        1.3 测定项目与方法
        1.3.1 茎秆力学与物理性状的测定
        1.3.2 茎秆节间解剖性状的测定
        1.3.3 茎鞘化学成分含量的测定
        1.3.4 茎秆质构特征的测定
        1.3.5 数据计算和统计分析
    2 结果与分析
        2.1 不同类型水稻品种的茎秆抗倒性能
        2.2 不同类型水稻品种TPA特性
        2.2.1 载荷特性
        2.2.2 穿刺特性
        2.3 不同类型水稻品种物理特性
        2.3.1 茎秆形态特征
        2.3.2 茎秆解剖结构
        2.4 不同类型水稻品种化学成分含量差异
        2.4.1 有机化学成分含量
        2.4.2 无机化学成分含量
        2.5 茎秆性状指标与抗折力、倒伏指数的关系
    3 讨论
    4 结论
    参考文献
第八章 籼粳杂交稻品种的蒸煮食味品质特征
    0 前言
    1 材料与方法
        1.1 供试材料与地点
        1.2 试验设计
        1.3 试验方法
        1.3.1 蒸煮食味品质的测定
        1.3.2 米饭食味值的测定
        1.3.3 米饭质构特征的测定
        1.3.4 米粉糊化特征的测定
        1.4 数据计算与统计分析
    2 结果与分析
        2.1 蒸煮食味理化评价指标
        2.2 蒸煮食味仪器评价指标
        2.2.1 食味计指标
        2.2.2 质构仪指标
        2.2.3 粘度分析仪指标
        2.3 理化指标与仪器指标间的相关性
    3 讨论与结论
        3.1 关于长江下游地区不同类型水稻品种蒸煮食味品质的综合评价
        3.2 关于蒸煮食味品质理化评价指标与仪器评价指标间的关系
    参考文献
第九章 籼粳杂交稻品种的营养元素积累特征
    0 前言
    1 材料与方法
        1.1 供试材料
        1.2 试验地点
        1.3 测定项目与方法
        1.3.1 植株营养元素积累量的测定
        1.3.2 光合生产指标的测定
        1.3.3 温光资料的获取
        1.4 数据计算与统计分析
    2 结果与分析
        2.1 养分积累特征
        2.2 养分分配特征
        2.3 相关生理生态特征
        2.3.1 生育期及其结构
        2.3.2 光合物质生产特性
        2.3.3 灌浆中期叶片蒸腾速率与荧光动力学参数
        2.4 光温生态资源积累变化与利用
        2.4.1 光周期累积、变化与利用
        2.4.2 温度资源累积、变化与利用
    3 讨论
        3.1 机插籼粳杂交稻氮磷钾硅积累量及其分配特征
        3.2 机插籼粳杂交稻营养积累过程中生理生态特征
    4 结论
    参考文献
第十章 结论与讨论
    1 结论
        1.1 甬优系列籼粳杂交稻产量及其构成因素特征
        1.2 甬优系列籼粳杂交稻群体物质积累与转运特征
        1.3 甬优系列籼粳杂交稻灌浆特征与生理生态基础
        1.4 甬优系列籼粳杂交稻冠层结构特征与光合特性
        1.5 甬优系列籼粳杂交稻根系形态与生理特征
        1.6 甬优系列籼粳杂交稻主要稻米品质特征
        1.7 甬优系列籼粳杂交稻茎秆抗倒性特征
        1.8 甬优系列籼粳杂交稻营养积累与相关生理生态特征
    2 讨论
        2.1 关于籼粳杂交超级(超高产)稻生产规律研究的必要性及其高产潜力挖掘
        2.2 关于籼粳杂交稻高生产力群体产量构成规律与生物学基础
        2.3 关于籼粳杂交稻的主要生理生态特征
        2.4 关于籼粳杂交稻稻米品质与增值功能特性
        2.5 籼粳杂交稻钵苗栽培集成技术
        2.5.1 钵苗摆栽高产群体动态指标
        2.5.2 钵苗机插栽培技术
    参考文献
致谢
攻读学位期间发表的学术论文目录

(7)籼、粳超级稻生产力及其形成的生态生理特征(论文提纲范文)

中文摘要
ABSTRACT
第一章 绪论
    1 研究背景、目的和意义
    2 国内外研究进展
        2.1 超级稻的发展
        2.2 “籼改粳”的发展
        2.3 籼、粳超级稻的差异
    3 研究选题的提出
    4 研究思路、内容和技术路线图
        4.1 研究思路
        4.2 研究内容
        4.3 技术路线图
    参考文献
第二章 籼、粳超级稻产量构成特征的差异
    摘要
    1 材料与方法
        1.1 供试材料
        1.2 试验设计和栽培管理
        1.3 测定内容与方法
        1.4 数据计算与统计方法
    2 结果与分析
        2.1 籼、粳超级稻产量及其构成因素的差异
        2.2 籼、粳超级稻产量形成的差异
    3 讨论
        3.1 关于籼、粳超级稻产量的差异
        3.2 关于籼、粳超级稻产量构成因素的差异
    4 结论
    参考文献
第三章 籼、粳超级稻光合物质生产与转运特征的差异
    摘要
    1 材料与方法
        1.1 供试材料
        1.2 试验设计与栽培管理
        1.3 测定项目与方法
        1.4 数据处理
    2 结果与分析
        2.1 籼、粳超级稻群体叶面积动态特征的差异
        2.2 籼、粳超级稻干物质生产积累特征的差异
        2.3 籼、粳超级稻生育前、中期光合物质生产与冠层结构的差异
        2.4 籼、粳超级稻生育后期光合物质生产与输出特征的差异
    3 讨论
        3.1 关于籼、粳超级稻生物学产量及其阶段形成特征的差异
        3.2 关于籼、粳超级稻干物质生产与转运特征的差异
        3.3 关于籼、粳超级稻光合生产特征的差异
    4 结论
    参考文献
第四章 籼、粳超级稻生育期与温光资源利用特征的差异
    摘要
    1 材料与方法
        1.1 供试材料
        1.2 试验设计和栽培管理
        1.3 测定内容与方法
        1.4 数据计算与统计方法
    2 结果与分析
        2.1 籼、粳超级稻生育期的差异
        2.2 籼、粳超级稻有效积温及其利用特征的差异
        2.3 籼、粳超级稻光合有效辐射及其利用特征的差异
    3 讨论
        3.1 关于籼、粳超级稻生育期的差异
        3.2 关于籼、粳超级稻温光资源利用的差异
    4 结论
    参考文献
第五章 籼、粳超级稻主要品质性状和淀粉RVA谱特征的差异
    摘要
    1 材料与方法
        1.1 供试材料
        1.2 试验设计和栽培管理
        1.3 测定内容与方法
        1.4 数据处理
    2 结果与分析
        2.1 籼、粳超级稻主要品质性状的差异
        2.2 籼、粳超级稻淀粉RVA谱特征的差异
        2.3 稻米主要品质性状和淀粉RVA谱特征值与灌浆结实期温光因子的关系
    3 讨论
        3.1 关于稻米品质形成的影响因素
        3.2 关于籼、粳超级稻品质特征的差异
    4 结论
    参考文献
第六章 籼、粳超级稻氮素吸收利用与转运特征的差异
    摘要
    1 材料与方法
        1.1 供试材料
        1.2 试验设计和栽培管理
        1.3 测定内容与方法
        1.4 数据计算与统计方法
    2 结果与分析
        2.1 籼、粳超级稻主要生育期群体干物重、植株含氮率和氮素积累量的差异
        2.2 籼、粳超级稻氮素阶段吸收量和阶段吸收速率的差异
        2.3 籼、粳超级稻氮素利用效率的差异
        2.4 籼、粳超级稻氮素转移特征的差异
    3 讨论
        3.1 关于籼、粳超级稻氮素阶段吸收积累特性的差异
        3.2 关于籼、粳超级稻氮素转运特征的差异
        3.3 关于籼、粳超级稻氮素利用特征的差异
        3.4 关于籼、粳超级稻高产栽培的精确施氮差异
    4 结论
    参考文献
第七章 籼、粳超级稻根系形态生理特征的差异
    摘要
    1 材料与方法
        1.1 供试材料
        1.2 试验设计和栽培管理
        1.3 测定项目与方法
        1.4 计算方法与数据统计
    2 结果与分析
        2.1 籼、粳超级稻根系干物质积累及分布特征的差异
        2.2 籼、粳超级稻根系主要形态性状指标的差异
        2.3 籼、粳超级稻根系主要生理性状指标的差异
    3 讨论
        3.1 关于籼、粳超级稻根系形态生理特征的差异及其与产量形成的关系
        3.2 关于籼、粳超级稻根系在土层中的分布差异
        3.3 关于籼、粳超级稻个体与群体根系形态生理特征的差异
    4 结论
    参考文献
第八章 籼、粳超级稻茎秆抗倒支撑特征的差异
    摘要
    1 材料与方法
        1.1 供试材料
        1.2 试验设计和栽培管理
        1.3 测定内容与方法
        1.4 数据计算与统计分析
    2 结果与分析
        2.1 籼、粳超级稻茎秆抗倒特性的差异
        2.2 籼、粳超级稻茎秆物理特征的差异
        2.3 籼、粳超级稻茎秆充实性状的差异
        2.4 籼、粳超级稻茎秆力学特性的差异
    3 讨论
        3.1 关于籼、粳超级稻生产力与抗倒伏能力的关系
        3.2 关于籼、粳超级稻茎秆形态和充实特征的差异
        3.3 关于籼、粳超级稻茎秆力学指标的差异
    4 结论
    参考文献
第九章 结论与讨论
    1 结论
        1.1 超级粳稻的生育优势与高产特征
        1.2 超级籼稻的生育特性与高产关键
        1.3 籼、粳超级稻高产栽培途径
        1.4 籼、粳超级稻高产生育动态指标
        1.5 因地制宜地实施“籼改粳”
    2 讨论
        2.1 “籼改粳”的相对优势及发展对策
        2.2 “籼改粳”推广中可能面临的问题
    3 创新点
    4 本研究存在的问题及下一步研究计划
    参考文献
致谢
攻读学位期间发表的学术论文目录

(8)再生稻栽培技术的研究进展(论文提纲范文)

0 引言
1 适宜再生稻栽培的品种选择
    1.1 再生稻的产量水平
    1.2 再生稻的品种筛选
2 适宜的栽培方式
    2.1 再生稻的留桩高度
    2.2 再生稻腋芽的萌发特性
    2.3 赤霉素等对腋芽萌发的影响
    2.4 再生稻促芽肥的施用
3 自然条件的限制
4 超级稻的再生稻栽培研究
5 小结

(9)适应区域气候变化的双季稻高产群体调控技术研究(论文提纲范文)

摘要
Abstract
第一章 研究背景与意义
    1.1 研究背景
    1.2 国内外研究现状
        1.2.1 超高产栽培研究现状
        1.2.2 超高产栽培群体调控技术
        1.2.3 超高产栽培群体调控现存问题
    1.3 气候变化及其对水稻群体调控的新要求
        1.3.1 气候变化的特点
        1.3.2 气候变化对水稻生产的影响
        1.3.3 适应气候变化的水稻群体调控
    1.4 研究切入点、目的与意义及基本思路
        1.4.1 研究切入点和目的与意义
        1.4.2 研究基本思路
    参考文献
第二章 长江中游地区双季稻生长期内气候变化特征及其对生产的可能影响
    前言
    2.1 研究区域概况
    2.2 气象数据的来源与处理方法
        2.2.1 数据来源
        2.2.2 气象数据处理方法
    2.3 结果与分析
        2.3.1 双季稻播种育秧期农业气候资源的变化趋势及其气候倾向率
        2.3.2 双季稻移栽返青分蘖期农业气候资源的变化趋势及其气候倾向率
        2.3.3 双季稻孕穗期农业气候资源的变化趋势及其气候倾向率
        2.3.4 双季稻抽穗期农业气候资源的变化趋势及其气候倾向率
        2.3.5 双季稻灌浆成熟期农业气候资源的变化趋势及其气候倾向率
    2.4 讨论与小结
        2.4.1 区域内温度、光照、降水量等气候资源变化对双季早稻生产的可能影响
        2.4.2 区域内温度、光照、降水量等气候资源变化对双季晚稻生产的可能影响
        2.4.3 小结
    参考文献
第三章 区域气候变化下不同密度和栽插苗数的调控效果
    3.1 前言
    3.2 试验材料与方法
        3.2.1 田间试验地点
        3.2.2 试验材料
        3.2.3 田间试验设计
        3.2.4 测定项目与方法
        3.2.5 数据分析
    3.3 结果与分析
        3.3.1 不同密度栽插苗数调控的早稻群体变化特征
        3.3.2 不同密度栽插苗数调控的晚稻群体变化特征
    3.4 讨论
        3.4.1 区域气候变化下不同密度和栽插苗数对早稻的调控效果
        3.4.2 区域气候变化下不同密度和栽插苗数对晚稻的调控效果
    3.5 结论
    参考文献
第四章 区域气候变化下不同氮肥和密度水平的调控效果
    4.1 前言
    4.2 试验材料与方法
        4.2.1 田间试验地点
        4.2.2 试验材料
        4.2.3 田间试验设计
        4.2.4 测定项目与方法
        4.2.5 数据分析
    4.3 结果与分析
        4.3.1 不同氮肥和密度水平调控的早稻群体特征
        4.3.2 不同氮肥和密度水平调控的晚稻群体特征
        4.3.3 不同氮肥、密度水平和双季稻产量的回归分析
    4.4 讨论
        4.4.1 区域气候变化下不同氮肥和密度水平对早稻的调控效果
        4.4.2 区域气候变化下不同氮肥和密度水平对晚稻的调控效果
    4.5 结论
    参考文献
第五章 区域气候变化下不同施氮量和栽插苗数的调控效果
    5.1 前言
    5.2 试验材料与方法
        5.2.1 田间试验地点
        5.2.2 试验材料
        5.2.3 田间试验设计
        5.2.4 测定项目与方法
    5.3 结果与分析
        5.3.1 不同施氮量、栽插苗数调控的早稻群体生长发育特性
        5.3.2 不同施氮量、栽插苗数调控的晚稻群体生长发育特性
        5.3.3 施氮量、栽插苗数和双季早晚稻产量的回归分析
    5.4 讨论
        5.4.1 区域气候变化下不同施氮量、栽插苗数对早稻群体调控的效果
        5.4.2 区域气候变化下不同施氮量、栽插苗数对晚稻群体调控的效果
    5.5 结论
    参考文献
第六章 全文结论及创新点
    6.1 全文结论
        6.1.1 长江中游地区双季早晚稻各生长期内农业气候资源变化存在差异
        6.1.2 密度和栽插苗数调控能提高区域双季早晚稻适应气候变化的能力
        6.1.3 区域气候变化下氮密调控对的双季稻群体、产量及其构成因子有明显效果
        6.1.4 依据双季稻农业气候变化特征,确定适宜施氮量和栽插苗数
        6.1.5 根据长江中游地区双季稻气候变化特征,提出了该地区适应气候变化的双季早晚稻群体调控技术体系
    6.2 主要创新点
        6.2.1 对双季早晚稻各生育时期的农业气候资源变化趋势进行了系统的研究和分析,探明了早晚稻各生育时期气候变化特征的差异
        6.2.2 提出了长江中游地区双季早晚稻适用气候变化的高产高效群体调控技术措施
    6.3 有待进一步研究的方向
        6.3.1 应在区域内开展多个站点气候变化的研究,以期为群体调控提供更细分化的气候变化特征
        6.3.2 双季早晚稻适应气候变化模拟调控技术
        6.3.3 加强双季早晚稻适应区域气候变化生理和遗传特性的研究
致谢
作者简介

(10)不同生态地点和施氮水平下超级稻产量表现及其养分吸收积累规律研究(论文提纲范文)

摘要
Abstract
第一章 前言
    1 超级稻高产稳产栽培生理特点
        1.1 超级稻产量及其构成的特点
        1.2 超级稻干物质生产及其运转
    2 超级稻栽培生理特性
        2.1 群体光合作用
        2.2 根系生理特性
        2.3 籽粒灌浆特性
        2.4 营养吸收特性
        2.5 生态适应性
    3 施氮对超级稻的影响
        3.1 超级稻的施肥方法
        3.2 氮肥施用时间
    4 研究的意义、目的
    参考文献
第二章 不同生态地点和氮肥水平下超级稻产量形成特点
    1 材料与方法
        1.1 供试品种
        1.2 试验设计
        1.3 测定项目
        1.3.1 SPAD值测定
        1.3.2 产量构成
        1.3.3 产量
        1.4 数据分析
    2 结果与分析
        2.1 超级稻不同生育时期的温度变化及太阳辐射量
        2.2 不同生态地点下超级稻产量及其构成特点
        2.2.1 超级稻的产量表现
        2.2.2 不同生态地点下超级稻的日产量
        2.2.3 超级稻的产量构成特点
        2.4 超级稻产量和产量构成因子关系的回归分析
        2.5 超级稻产量和产量构成因子关系的通径分析
    3 讨论
    参考文献
第三章 不同生态地点和施氮水平下超级稻干物质积累特点
    1 材料与方法
        1.1 试验设计
        1.2 测定项目
        1.2.1 齐穗期干物质
        1.2.2 成熟期干物质
        1.3 数据处理
    2 结果与分析
        2.1 不同生态地点对超级稻生育期的影响
        2.2 超级稻干物质生产特点
        2.3 超级稻的收获指数
        2.4 作物群体生长速率
    3 讨论
    参考文献
第四章 不同生态地点和施氮水平下超级稻氮、磷、钾积累特点
    1 材料与方法
        1.1 试验设计
        1.2 测定项目
        1.2.1 植株氮磷钾的测定
        1.2.2 相关计算公式
        1.3 数据分析
    2 结果与分析
        2.1 超级稻养分吸收量及其收获指数
        2.1.1 氮素吸收量及氮收获指数
        2.1.2 磷素吸收量及磷收获指数
        2.1.3 钾吸收量及钾收获指数
        2.2 超级稻的氮肥利用率
        2.2.1 氮肥农学利用率
        2.2.2 氮肥偏生产力
        2.2.3 氮肥吸收利用率
        2.3 超级稻每生产1000 kg稻谷氮、磷、钾需要量
        2.3.1 超级稻每生产1000 kg稻谷需氮量
        2.3.2 超级稻每生产1000 kg稻谷需磷量
        2.3.3 超级稻每生产1000 kg稻谷需钾量
        2.4 超级稻收获产量与每生产1000 kg稻谷氮、磷、钾需要量的关系
        2.5 超级稻收获产量与氮、磷、钾吸收量的关系
        2.6 超级稻收获产量与氮、磷、钾收获指数的关系
        2.7 超级稻收获产量与成熟期稻草含氮量、氮吸收量的关系
        2.8 超级稻收获产量与氮肥利用率的关系
    3 讨论
    参考文献
第五章 全文结论与创新之处
    1 全文结论
    2 创新之处
致谢
作者简历
发表文章

四、一季超级稻高效栽培气象条件研究(论文参考文献)

  • [1]中国特色水稻栽培学发展与展望[J]. 张洪程,胡雅杰,杨建昌,戴其根,霍中洋,许轲,魏海燕,高辉,郭保卫,邢志鹏,胡群. 中国农业科学, 2021(07)
  • [2]常规稻和杂交稻在节本栽培条件下的农学表现及能量与经济分析[D]. 袁珅. 华中农业大学, 2020
  • [3]不同氮肥水平下超级杂交稻与普通杂交稻农艺表现的比较研究[D]. 帅鹏. 华中农业大学, 2019(02)
  • [4]减氮背景下超高产水稻品种产量和氮肥利用效率的农学与生理研究[D]. 黄礼英. 华中农业大学, 2018
  • [5]中国水稻产量差评估及长江中下游地区增产途径探究[D]. 邓南燕. 华中农业大学, 2018(01)
  • [6]甬优系列籼粳杂交稻生产力优势与相关生理生态特征研究[D]. 姜元华. 扬州大学, 2015(10)
  • [7]籼、粳超级稻生产力及其形成的生态生理特征[D]. 龚金龙. 扬州大学, 2014(01)
  • [8]再生稻栽培技术的研究进展[J]. 朱永川,熊洪,徐富贤,郭晓艺,张林,刘茂,周兴兵. 中国农学通报, 2013(36)
  • [9]适应区域气候变化的双季稻高产群体调控技术研究[D]. 刘文祥. 湖南农业大学, 2013(07)
  • [10]不同生态地点和施氮水平下超级稻产量表现及其养分吸收积累规律研究[D]. 蒋鹏. 湖南农业大学, 2013(07)

标签:;  ;  ;  ;  

超级稻一季高效栽培气象条件研究
下载Doc文档

猜你喜欢