经济型矿山远程监控系统的研究与实现

经济型矿山远程监控系统的研究与实现

一、一种经济型矿井远程监视系统的研究及实现(论文文献综述)

王宝来,胡开庚,陈安国,韩国庆,袁志金[1](2021)在《基于多系统融合的反风演练指挥平台设计与应用》文中研究表明针对目前煤矿反风演练过程中存在的反馈信息不及时、缺乏大数据的有效分析和实时操作不方便等问题,设计了基于多系统融合的反风演练指挥平台。该平台以矿井反风演练过程为依据,将平台服务器和客户端与煤矿现有的安全监控系统、井下人员定位系统、矿车定位系统、综合自动化系统、电力监控系统、视频监视系统等服务器配置在同一个工业环网内,使得服务器和客户端与各系统能够利用相应的协议直接通信,利用大数据技术有效获取相应数据,对数据进行分类、筛选和加工,完成多系统融合。在此基础上设计了实时地图系统、停送电系统、综合报警系统、交互组件系统。实时地图系统可实现地图的动态更新和显示,将人员、风向、瓦斯等重要观测数据以图形化的方式显示在通风系统示意图上,实现煤矿的地理信息管理、分析、辅助决策等;停送电系统可在供电系统示意图上实时显示开关状态,实现了供电线路自动搜索和远程停送电功能,保障停送电的可靠性与安全性;综合报警系统通过文本和语音的形式实时反映平台和现场发生的异常信息,并根据需要启动相应的应急预案,有效减少现场事故的发生;运用交互组件可快速实现远程视频调用、区域人员查看、实时数据获取、人员位置搜索、人员轨迹查询等功能,有效提高了参与反风演练人员的工作效率。现场应用结果表明,该平台可减少参与反风演练人员数量,提高停送电效率,保证演练过程安全可靠,可应用于矿井各种实际灾害状态下的抢险救灾。

高连月,徐德亮,周雨松,陈思[2](2021)在《金属矿山井下主扇风机远程实时监控系统的研究及应用》文中研究指明矿山井下主通风机24 h不间断运行,为进一步优化矿山井下主扇风机的使用和控制,实现井下风量实时调整与自动化控制、安全监控、节能降耗,结合刘塘坊矿业实际,设计了主扇风机远程自动化控制系统。本系统共包含四大部分:变频器调速系统、PLC控制及风机在线检测系统、风机远程集中监控系统、辅助视频监控系统。以可编程控制器、变频器为主体,配置传感器、交换机等设备,实现对现场各项信息的采集、设备的控制,通过光纤构建工业以太网与地表集控中心进行通信,实现远程自动化控制、状态监测、异常报警保护及数据报表等功能。

毛小学,李晓亮,武伟伟[3](2021)在《自动化电力监控系统在煤矿中的应用》文中研究表明在当今社会经济的发展中,自动化系统在电力监控中的应用非常重要。监控系统是煤炭生产中的重要环节,可以保障生产安全,预防安全事故,造成重大人员伤亡和经济损失。目前,大部分煤炭企业都引入了自动化监控系统来提高企业的生产效率和安全性,该技术可以对地下和地面电力监视系统进行远程监视和无人操作。运用自动化电力监控系统可以极大地降低生产成本,从而提升工作的效率,该文详细分析了自动化电力监控系统在煤矿中的应用。

闵凡超[4](2021)在《基于无线网络的煤矿环境监控系统及故障诊断技术研究》文中研究表明目前,煤矿井下环境复杂,生产风险大、作业人员多,生产系统中任何一环发生故障,都可能造成巨大的经济损失,甚至造成安全事故。因此,设计并配备先进的煤矿环境监控系统不仅可以提高煤矿生产的经济效益与安全系数,而且可以减少人力投入、提升煤矿作业的高水平自动化。完善的煤矿环境监控系统能够有效地解决煤矿生产存在的各类问题,对于实现煤矿生产的智能化与高效化以及保障国家能源供给均具有重要意义。本文主要研究工作从以下几个方面展开:(1)本文按照矿区生产条件及检测对象性质,自主设计了异构分布式通信方式,研发多通讯协议多传感器融合的分布式煤矿生产监测与控制系统,以实现煤矿生产的智能化和现代化。(2)针对井下复杂恶劣环境对传感器带来的噪声干扰,采用DB6小波实现快速去噪与同步特征提取,然后使用概率神经网络进行故障识别,实现了一种新型快速在线故障诊断系统,对系统运行过程中遇到的新型未知故障类型,无需重新训练,直接在线增加模式层单元即可,实现在线增量式故障诊断。经测试验证了该模型具有良好的故障诊断效果。(3)根据煤矿生产的需求,使用Qt完成KTC2018煤矿环境监控系统上位机软件的设计,实现底层数据融合和协议转换,完成设备远程监控、状态显示、智能查询、故障诊断等功能。融合故障诊断系统,将在线增量式故障诊断模型应用于煤矿环境监测控制系统,实现理论研究与实际生产相结合,使故障诊断的速度更快、准确性更高。最后搭建系统测试平台,针对相应的上位机软件功能完成软件测试。

霍昱名[5](2021)在《厚煤层综放开采顶煤破碎机理及智能化放煤控制研究》文中认为随着我国矿业现代化进程的稳步推进,采矿装备的电气化带动了采矿技术的快速发展,开采规模也随之不断扩大。融合大数据、云计算、人工智能以及工业5G等新型信息技术的智能化采矿方法,不仅能达到“无人”矿井的行业目标,更成为保障我国能源安全与促进经济高质量发展的全新机遇。尽管信息化技术成熟度不断提高,综采放顶煤技术在我国经过四十余年的发展也已经取得明显进步,但智能化综放开采仍然存在一些问题亟待解决,主要体现在综放开采理论、技术与智能化开采实践联系不紧密、应用程度不高等方面。厚煤层综放开采智能化的关键是放煤过程的智能化,须在掌握顶煤破碎、放出规律的基础上,结合智能化探测、控制技术手段,建立智能化放煤控制体系。本文根据王家岭煤矿12309智能化建设工作面为背景,研究着眼于综放开采全过程,以顶煤采动应力场演化规律为切入点,揭示顶煤在综放开采过程中的破碎机理,阐明散体顶煤由后刮板输送机放出的放出特性,提出合理的放煤方法,为厚煤层智能化放煤的增产增效提供理论支撑。在理论分析的基础上,提炼实现智能化放煤所需的各项关键技术,并将其综合应用,为厚煤层智能化放煤的实现提供重要的技术支撑。得到的主要结论有:(1)基于主应力空间,研究了厚煤层综放开采过程中顶煤受力单元主应力场演化规律。利用有限差分数值模拟方法,考虑液压支架工作阻力对顶煤的支撑作用,阐明了高水平应力条件下顶煤主应力值变化及方向偏转特性,在此基础上将顶煤划分为原岩应力区、中间主应力升高区、应力显着升高区、应力峰后降低区及液压支架控顶区5个分区,得到了高水平应力条件下顶煤主应力驱动路径,为后续顶煤渐进破碎机理的研究提供了应力边界条件。(2)基于弹塑性力学理论,明析了描述顶煤应力状态的平均应力、偏应力及应力Lode角3个参数在综放开采中的演化过程,揭示了上述3个参数在各顶煤分区中的演化特性,基于高精度工业CT扫描技术,运用合成岩体(SRM)数值建模方法,重构了裂隙煤体三维数值模型,运用“有限差分-颗粒流”耦合数值方法,建立了“连续-非连续”耦合真三轴数值模型,在指定主应力边界条件下模拟了顶煤渐进破碎过程,阐明了试件裂隙发育迹线及破碎块度分布规律,实测了放落顶煤破碎块度分布特性,与数值模拟结果进行了类比分析,证明了数值方法可靠性,为后续散体顶煤运移及放出规律的研究提供了数据支撑。(3)基于“有限差分-颗粒流”耦合算法,建立了“连续-非连续”耦合综放开采数值模型,开发了“随机自由落体-逐步伺服夯实”的耦合建模方法,反演了综放开采从工作面设备安装至放煤稳定的全过程,得出了煤矸分界线形态演化的3个特性,并以此为依据改进了“Hook”函数,使之适于描述煤矸分界线形态,以改进的“Hook”函数对煤矸分界线形态进行了拟合,揭示了综放开采煤矸分界线形态从初次放煤到周期放煤的演化规律,将其演化历程分为了初采影响阶段、过渡放煤阶段和周期放煤阶段3个阶段,为后续基于智能化放煤控制技术的放煤工艺选择提供了顶煤位移边界条件。(4)将整个放煤过程划分为放煤开始前、放煤过程中及放煤结束后3个阶段,分析了各阶段内的智能化控制技术,包括:放煤开始前的顶煤厚度探测、采煤机惯导定位,放煤过程中的放煤机构精准监测控制、煤矸识别,放煤结束后的采出量实时监测。将上述智能化技术有机结合,建立了智能化放煤控制技术体系,从自感知、自学习、自决策及自执行4个层面,揭示了各智能化放煤控制技术的内在联系,最终构建了智能化放煤控制的基本结构,为后续智能化放煤工艺参数选择及实现智能化放煤控制提供了技术依据。(5)基于智能化放煤控制技术体系,以煤矸分界线演化特性研究结果为顶煤位移边界条件,改进了Bergmark-Roos理论,建立了周期放煤时间预测理论模型,提出了放煤口启停判别的综合判别方法,建立了包含多台液压支架的“有限差分-颗粒流”耦合数值模型,优化得出了适用于现阶段智能化综放工作面的合理放煤工艺参数,最终于王家岭煤矿12309工作面建立了智能化综放示范工作面,升级更新了工作面主要生产设备及组织关系,验证智能化放煤控制各项技术的可靠性,实现了较好的经济效益和社会效益。

徐晓天[6](2021)在《煤矿井下数字化水位测控系统研究》文中研究表明煤层开采过程中由于地下水不断涌出,经常造成井下水仓水位超限,对正常生产秩序造成较大干扰,甚至对井下人员的安全造成威胁。井下水仓相互之间距离较远,目前存在有信息传输方式单一,水位信息共享程度不足等缺点,影响着煤矿井下水位的安全测控。为进一步完善煤矿井下水位测控方式,课题在国内外研究的基础上,设计了一种融合多种传输协议,具备较强数据交互能力的井下水位测控系统,实现了水位信息的数字化测控,提升了矿井水位控制的水平。课题首先完成数字化水位测控系统总体方案设计,通过分析数字化水位测控系统组成结构,从上到下将测控系统划分为井上集控层、井下控制层和井下执行层三级网络结构。并针对数字化水位测控系统硬件设计、数字化水位测控系统井下水位控制、数字化水位测控系统上位机软件设计和数字化水位测控系统通信方案作具体设计。在井下执行机构层面,系统设计了以差分电容式水位传感器为核心的水位传感系统并通过RS-485将其与系统控制分站相连,完善数据导流通路。在井下控制分站层面,系统设计了以ARM芯片为核心的测控站点分站系统软硬件结构,测控站点以内核驱动模块、收发控制和接口模块、液晶显示模块、人机交互模块和电源模块五大部分为主,集数据采集显示和操作控制于一体,兼具本地信息交互和旁机信息检索双重功能,并通过CAN协议总线将测控站点串联,实现数据共享。在上位机监控系统层面,设计了以上位机King View组态软件为核心布局组态内容,形成了以图形界面系统、实时数据库系统、通信设备和I/O设备驱动为核心的组态方案。并围绕人机交互界面设计、信息发布、数据库查询和水位控制算法脚本做具体设计。实现了对全矿井硬件资源的统筹管理,综合调度。集控主机通过架设以太网通讯基础的Modbus TCP/IP总线与井下控制层设备相连,实现水位测控系统的命令调度和数据交换。课题通过模型仿真和模拟实验的方式验证了全系统的可靠性。在水位传感器层面,通过实验验证了水位传感器的性能特性,在测量系统方面,其测量准确度较高,误差主要集中在-0.02m—0.02m之间,具备井下使用条件。在数字通信系统方面,实验验证其单路传输耗时最高为0.41 ms,多路传输耗时为3.24 ms,平均传输耗时0.405 ms/路,传输全过程无阻塞、丢包现象发生。在井下控制设备层面,通过仿真和实验验证了控制分站的性能特性。在结构方面,仿真分析了主板硬件抗干扰能力和主板信号完整性。在通信方面,实验验证CAN总线一次完整数据传输用时约0.2 ms,一次完整的协议转换耗时约0.21 ms,转换传输过程无拥堵冲突,运行稳定。随后设计总体实验,验证了3台分站数据交互控制能力良好,可以在水位发生变化时实时启动潜水泵,满足控制需求。在上位机监控系统层面,信息交互正常,数据读写高效,远程监控界面正常,模拟预测功能准确,Modbus TCP/IP协议传输、收发功能正常。平均传输速率为1.147 Mbps,上下限波动范围为1.114 Mbps到1.180 Mbps。整体系统平台数据传输稳定,其最大速率为117.38 kbps,最小速率为97.78 kbps,平均可达102.8 kbps。指令动作延时主要集中在13 ms以下,平均延时为8.653 ms,最大时延为32.174 ms,系统控制的实时性较好。综合测试表明,该系统可以适应煤矿井下数字化水位测控的需求,具备一定的应用前景。

曹宇[7](2021)在《大型新型干法水泥生产线DCS控制系统设计》文中指出在目前水泥工业自动化控制系统中,DCS控制系统是最成熟的一种。对于大型规模以上新型干法水泥生产线,从功能、成本和实际应用中,以基于可编程控制器(PLC)的集散控制系统(DCS)应用最为广泛。根据项目的实际情况,通过查阅、分析水泥工艺及自动化控制系统的相关文献资料,结合高固气比水泥生产新工艺、国外进口大型机械设备对于电气控制要求和DCS控制系统的要求,本文主要完成了一条2X6500t/d熟料新型干法水泥生产线的DCS控制系统的硬件配置及软件设计工作。根据2X6500t/d熟料新型干法水泥生产线各工艺流程和生产环节划分现场控制站和远程站,确定了DCS系统结构。通过对用电设备远程控制点数和仪表测点进行汇总,统计出每个工艺流程所需的控制点数,从而确定全线的控制总点数。根据统计出来的点数情况和DCS系统结构,从现场控制站、网络、中控室操作站三部分来配置硬件。本次硬件平台采用Schneider(施耐德)公司的Unity Quantum系列自动化产品,上位监控及数据采集软件采用Schneider Vijeo Citect V7.2,下位编程组态软件采用Schneider Unity Pro V7.0,结合对新型干法水泥生产工艺要求、电气要求和仪表检测要求进行系统需求分析,完成程序结构组态。基于程序结构组态,定义参数表,进行控制程序编写。当下位程序编写完后,再利用上位监控及数据采集软件,依据工艺流程设计出操作站画面,Vijeo Citect通过Speed Link快速链接标签库,并从Unity Pro程序中自动创建变量,以Modbus Plus(MB+)协议方式从下位机读取数据,从而完成了整个水泥生产线的DCS控制系统工程化设计。同时,水泥工业控制系统中,根据控制权限的优先级,经常用到两种电动机控制方式:机旁优先控制方式(也称作就地优先控制方式)和中控优先控制方式(也称作远程优先控制方式)。对于前者,已被大家所熟悉和广泛应用,对于后者,很多电气人员很陌生,但是其应用场所越来越多。本文结合实际工程中的应用和经验,重点讨论了中控优先控制方式的具体实现方法和各自特点,并根据它们之间的区别对适合的应用场所给出建议。本文在分析了大型新型干法水泥生产线的生产工艺要求、国外进口设备的电气控制要求、仪表检测要求的基础上,确定了DCS系统结构及配置,通过软件编程和组态,实现了自动化控制功能。从电气控制线路和DCS系统的设计优化,使得设备和人员更安全,保证了大型新型干法水泥生产线工艺设备可靠运行,稳定工艺参数,保证产品质量,节约能源,提高了生产线的运转率。根据本文提出的设计方案和思路,已成功实现了一条水泥生产线的自动化控制系统。

胡雪雪[8](2020)在《矿井提升机全自动运行监控系统研究》文中研究指明矿井提升机是煤炭井下运输的最后环节,每天不间断的运行,其工作任务繁重,电力消耗巨大。现阶段国内大多数矿井都采用单PLC作为主控制系统来控制提升机运行,很大一部分调速系统仍使用转子回路串电阻进行调速,长时间运行,能耗过大。在实际运行中,有时故障会出现在PLC硬件或外围器件上,导致提升机停运,给煤炭生产和安全造成严重损失。本文设计并开发了一套冗余PLC控制的矿井提升机全自动运行监控系统。介绍了总体方案设计,采用两套西门子S7-400 PLC来实现硬件的双机热备,保留原转子回路串电阻调速系统,接入变频调速系统,并通过软件编程实现用模拟退火-遗传算法来优化提升机运行参数、双PLC故障的冗余切换及通讯、节能运行控制、变频和转子回路串电阻调速方式的切换、安全回路、模糊故障树诊断及报警等,确保提升机安全可靠运行。为了保证提升机节能运行,本文提出了一种节能运行控制方法。运用模拟退火-遗传算法优化使一次提升能耗最小时的提升机运行参数,并带入S行程控制算法来控制提升机运行,并与实际一次提升能耗相比较,分析结果表明本文提升机节能运行控制算法能够实现提升机节能、安全、稳定和可靠运行。为了保证提升机可靠运行,本文提出了一种模糊故障树诊断分析方法。设计了矿井提升系统模糊故障树诊断分析。运用模糊故障树对“钢丝绳”系统故障进行定性和定量分析,求出重要度并按大小排序,结果表明运用模糊故障树诊断技术对提升系统故障进行诊断,可给检修人员提供技术参考,保证提升机得到及时检修。选用西门子WinCC组态软件完成上位机监控设计。通过MPI通讯协议实现上位机与现场PLC数据交换,实时显示并监控提升机在井筒中运行时的各种状态及故障报警信息,根据监控界面,司机可实时掌控提升机工作状况。本文通过对某矿矿井提升机全自动运行监控系统的研究,实现了该提升机的全自动运行,保证了该提升机运行更加稳定可靠,减小了系统功耗,检修更加方便,提高了生产效率。

陈帅[9](2020)在《基于Web技术的金川公司三矿区通风管理系统研究》文中研究指明在我国矿山安全研究领域,矿井通风技术的研究比较薄弱,尤其是在矿井通风系统实时监测与井下通风动力装置和通风构筑物远程智能化控制技术方面更为落后。在实际的矿井生产中,矿井通风系统主要靠现场经验进行调节,存在自动化和智能化程度低,瓦斯浓度、粉尘浓度和CO浓度等重要灾变参数采集不及时,通风设备远程集中控制和运行状态参数动态监测显示技术不先进等问题。在智能化迅速发展的背景下,发展智能通风系统是矿山实现少人化、无人化的必由之路。本文通过对国内外矿井智能通风系统研究现状及发展趋势的分析,结合金川公司三矿区通风系统现状,梳理了通风管理系统的总体需求,提出了通风管理系统模块化设计及各模块实现功能需求,设计了主要通风机远程监测控制模块、辅助通风机远程监测控制模块、局部通风机远程监测控制模块、自动化风门远程监测控制模块、自动化风窗远程监测控制模块、风墙远程监测模块等六大功能模块,采用了 B/S架构设计和Java语言开发,前台采用Bootstrap、Layui、Bootstrap Table、Thymeleaf 等技术布局显示,服务端采用 Spring Boot、Mybatis-Plus、Shiro、Druid、WebSocket等技术搭建,数据库选用SQL Server 2008,完成了基于Web技术的金川公司三矿区通风管理系统的设计与功能实现。并通过工程应用,实现了金川公司三矿区部分通风设备的远程监测控制,包括:主要通风机的远程监测控制、0#辅助通风机的远程监测控制和1150m水平内9台局部通风机的远程监测监控。图[41]表[31]参[71]

赵涛涛[10](2020)在《五阳煤矿新副井提升机改造与调试》文中研究表明本文以潞安化工集团五阳煤矿新副井提升机的系统改造为背景,按照安全、高效、先进、易维护等原则,为了满足新副井上下人和上下物料的要求,特制定了新副井提升机改造方案,本次改造主要是对整个提升机的电控系统进行改造,具体实施有以下几个方面:(一)对提升机的电动机进行选型,为了使电动机调速性能好,采用直流电动机作为副井提升机的电动机,新电动机功率以原电动机的功率作为参考进行选型,通过数学运算,对新选择电动机过载能力进行验算,满足生产需求,选择与新电动机相匹配的减速机、主滚筒、盘闸等机械设备。(二)对电控系统电气设备进行设计,从新副井工业广场变电所引入两趟6KV高压作为提升机的高压电源,采用6台KYN28型开关柜作为高压电源柜,其中2台用于电源进线柜,1台PT柜,2台作为传动装置的高压进行柜,1台作为低压电源的进线柜。直流电动机传动装置采用2台ABB公司生产的DCS800系列全数字直流调速装置,选择平波电抗器使传动装置输出直流更加平稳。为了保护电动机,在电动机与传动装置之间加装快开装置。(三)对电控系统进行软件设计,选用2台S7-400系列PLC作为提升机控制系统和监控系统,编程以提升机发开车信号、系统检查提升机是否具备开车条件、提升机初加速运行、提升机匀加速运行、提升机匀速运行、过减速点后匀减速运行、爬行段逐渐减速至停车点停车的顺序过程作为主程序循环。设计中考虑提升机运行时可发生59个故障,并将这些故障分成四类,提升机根据故障分类做不同响应。(四)上位机监控系统由工业控制计算机软件和西门子公司生产的wincc人机交互界面组成,在winccexplorer软件中对上位机进行编程,人机交互界面共有提升机运行、历史曲线、故障记录、特殊操作、行控校正五个画面,通过人机交互界面对提升机各设备动态进行实时监控,对故障进行归档查询。(五)提升机改造完成后,对提升机进行调试,调试包括传动系统调试、主控系统调试、主控系统与传动系统联调、功能和性能测试。通过对新副井提升机进行改造,可大大提升它的各种安全保护及自动化水平,还可以实现全自动运行,并可以对提升机各个参数及状态进行实时监控,进而提高矿井提升机的智能化水平。

二、一种经济型矿井远程监视系统的研究及实现(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、一种经济型矿井远程监视系统的研究及实现(论文提纲范文)

(1)基于多系统融合的反风演练指挥平台设计与应用(论文提纲范文)

0 引言
1 煤矿反风演练过程
2 反风演练指挥平台设计
    2.1 平台总体设计
    2.2 数据获取与分析
    2.3 实时地图系统设计
    2.4 停送电系统设计
    2.5 综合报警系统设计
    2.6 交互组件系统设计
3 反风演练指挥平台应用
4 结论

(2)金属矿山井下主扇风机远程实时监控系统的研究及应用(论文提纲范文)

1 矿井通风实时调控的原理
    1.1 井下环境与通风系统状态实时监测
    1.2 通风设备设施调控原理
2 矿井通风实时调控系统设计
    2.1 远程控制系统
    2.2 远程控制系统的设计
        2.2.1 系统的硬件设计
        2.2.2 系统的软件设计
        2.2.3 系统的通信设计
3 控制系统的主要功能
4 刘塘坊铁矿应用实例
    4.1 刘塘坊铁矿通风系统现状
    4.2 实施效益分析
        4.2.1 成本降低
        4.2.2 设备管理提升
        4.2.3 系统的开放性
5 结论

(3)自动化电力监控系统在煤矿中的应用(论文提纲范文)

0 引言
1 电力监控系统的自动化分析
    1.1 电力自动化监控系统的特点
        1.1.1 高性能价格比,功能全面
        1.1.2 科学管理,降低成本
    1.2 电气自动化监控方法的分析
        1.2.1 电气自动化系统的集中监控
        1.2.2 现场总线监视方法
2 煤矿监测技术现状
3 煤矿电力监控系统主要功能介绍
4 煤矿自动化监控系统组成及应用范围
    4.1 调度监控网络系统功能
    4.2 调度监控系统网络结构
    4.3 矿山综合自动化控制系统的适用范围
    4.4 矿山综合自控系统功能
5 完善煤矿电力监控系统的措施
    5.1 加强传感器控制器的改进与发展
    5.2 引入监测煤矿的先进新技术
    5.3 变电站自动化监控软件INT-SCADA的总体设计
    5.4 对电力监控系统的监控主站进行升级
    5.5 对监控变电站电力监控系统进行优化
    5.6 自动控制系统内部功能的设计
    5.7 远程控制、遥测和视频连接应用
    5.8 矿山综合自动化控制系统的运用
6 结语

(4)基于无线网络的煤矿环境监控系统及故障诊断技术研究(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 研究背景
    1.2 课题研究现状
        1.2.1 国内外发展状况
        1.2.2 故障诊断发展动态
    1.3 本文内容结构与创新点
第2章 煤矿设备常见故障分析
    2.1 煤矿采集运输系统
    2.2 设备故障分析
        2.2.1 设备常见的故障分类
        2.2.2 设备常见的故障处理方法
    2.3 煤矿环境检测难点分析
    2.4 煤矿环境监控系统功能需求分析
    2.5 本章小结
第3章 煤矿环境监控系统方案设计及硬件实现
    3.1 KTC2018煤矿环境监控系统总体设计
    3.2 通讯协议选择
        3.2.1 Modbus协议
        3.2.2 DLT645协议
    3.3 系统检测内容
    3.4 检测模块选型
        3.4.1 温度传感器
        3.4.2 撕裂传感器
        3.4.3 压力传感器
        3.4.4 煤位传感器
        3.4.5 跑偏传感器
        3.4.6 振动传感器
        3.4.7 烟雾传感器
    3.5 KTC2018集控台系统设计
    3.6 本章小结
第4章 基于小波分析和PNN结合的设备故障预警系统
    4.1 概率神经网络
        4.1.1 概率神经网络简介
        4.1.2 模式分类的贝叶斯决策
    4.2 概率神经网络结构模型
    4.3 小波变换与PNN结合的故障诊断模型分析
        4.3.1 小波包分析
        4.3.2 小波包算法
        4.3.3 小波包分解与PNN故障诊断模型分析
    4.4 数据预处理
    4.5 仿真结果分析
    4.6 本章小结
第5章 KTC2018煤矿环境监控系统研发与测试
    5.1 KTC2018监控系统软件系统架构设计
        5.1.1 KTC2018系统框架
        5.1.2 KTC2018系统控制流程
        5.1.3 KTC2018系统控制模式
        5.1.4 KTC2018系统核心功能
        5.1.5 KTC2018上位机软件工程目录
    5.2 KTC2018系统程序开发框架
        5.2.1 Qt简介
        5.2.2 信号和槽
    5.3 函数类模块
        5.3.1 线程类
        5.3.2 通信类
        5.3.3 窗口类
        5.3.4 其它函数
    5.4 KTC2018工作采面设计
        5.4.1 KTC2018工作采面功能分析
        5.4.2 KTC2018工作采面控制台设计
    5.5 KTC2018上位机皮带采面设计
        5.5.1 KTC2018皮带采面功能
        5.5.2 KTC2018皮带采面运输保护机制
        5.5.3 KTC2018皮带采面主控台功能设计
    5.6 KTC2018系统参数设置和诊断系统界面设计
    5.7 KTC2018软件性能测试结果及故障诊断测试
        5.7.1 KTC2018系统测试平台建设
        5.7.2 KTC2018系统试测平台检测内容
        5.7.3 KTC2018底层协议转换功能测试
        5.7.4 KTC2018底层串口数据交互功能测试
        5.7.5 KTC2018系统设备连锁控制功能测试
        5.7.6 KTC2018系统设备故障检测及报警处理功能测试
        5.7.7 KTC2018系统整体稳定性测试
    5.8 本章小结
第6章 总结和展望
    6.1 总结
    6.2 展望
致谢
参考文献
在学期间主要科研成果
    一、发表的学术论文
    二、其它科研成果

(5)厚煤层综放开采顶煤破碎机理及智能化放煤控制研究(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 研究背景及意义
    1.2 国内外研究现状
        1.2.1 综放开采技术发展历程
        1.2.2 顶煤采动应力场演化规律
        1.2.3 顶煤破碎机理及冒放性评价
        1.2.4 顶煤运移特性及放出规律
    1.3 研究内容与方法
        1.3.1 研究内容
        1.3.2 研究方法
        1.3.3 技术路线
第2章 厚煤层综放开采采动应力场演化机制
    2.1 顶煤应力状态描述及数值模拟方案
        2.1.1 基于主应力空间的顶煤应力状态
        2.1.2 煤岩层赋存条件及力学参数测定
        2.1.3 数值模型及方法
    2.2 高水平应力条件下顶煤主应力场演化规律
        2.2.1 主应力分布规律及数值监测方法
        2.2.2 主应力值演化规律
        2.2.3 应力主轴偏转特性
    2.3 顶煤主应力演化路径
        2.3.1 主应力场顶煤分区方法
        2.3.2 顶煤分区特征位置及应力路径
    2.4 本章小结
第3章 厚煤层综放开采顶煤破碎机理
    3.1 各顶煤分区内相关参数演化特性
    3.2 裂隙煤体三维重构及细观参数标定
        3.2.1 高精度工业CT扫描试验
        3.2.2 节理裂隙数值重构
        3.2.3 基于SRM方法的裂隙煤体数值建模
    3.3 主应力路径下顶煤破碎规律
        3.3.1 数值模型及主应力加载流程
        3.3.2 裂隙煤体渐进破碎迹线
        3.3.3 裂隙煤体破碎块度分布及现场实测
    3.4 本章小结
第4章 厚煤层综放开采顶煤运移放出规律
    4.1 数值模拟方法及前期结果
        4.1.1 FDM-DEM耦合数值模型
        4.1.2 本构模型及模拟参数分析
        4.1.3 数值模拟流程及放煤前结果分析
    4.2 初次放煤过程顶煤运移放出规律
        4.2.1 初放放出体形成过程
        4.2.2 初放松动体演化特性
        4.2.3 初放煤矸分界线动态分布
    4.3 周期放煤过程顶煤运移放出规律
        4.3.1 顶煤放出体演化历程
        4.3.2 放煤松动体范围扩展规律
        4.3.3 煤矸分界线形态特性
    4.4 本章小结
第5章 智能化放煤控制方法及放煤工艺参数
    5.1 智能化放煤控制过程及控制体系
        5.1.1 放煤前顶煤厚度探测及采煤机定位
        5.1.2 放煤中放煤机构动作启停判别及控制
        5.1.3 放煤后放出量实时监控
        5.1.4 智能化放煤控制体系
    5.2 基于放煤时间预测模型的放煤终止原则
        5.2.1 放煤时间预测模型
        5.2.2 重力加速度修正系数的标定
        5.2.3 放煤时间预测模型的应用
    5.3 放煤步距与放煤顺序优化
        5.3.1 放煤步距及放煤顺序优化方法
        5.3.2 不同放煤顺序下放出体形态特性
        5.3.3 不同放煤顺序下顶煤放出量及回收率
    5.4 本章小结
第6章 厚煤层智能化放煤工业性试验
    6.1 12309 智能化综放工作面建设概况
        6.1.1 工作面人员配置及分工
        6.1.2 顺槽协同放煤控制中心
        6.1.3 地面放煤监测与控制中心
        6.1.4 智能化放煤控制流程
    6.2 智能化放煤控制技术试验
        6.2.1 放煤前顶煤厚度探测及采煤机定位
        6.2.2 放煤中放煤机构动作启停判别及控制
        6.2.3 放煤后采出量实时监测
        6.2.4 放煤远程集中控制软件
    6.3 智能化工作面建设效益分析
    6.4 本章小结
第7章 结论与展望
    7.1 结论
    7.2 主要创新点
    7.3 展望
参考文献
攻读学位期间取得的科研成果
致谢

(6)煤矿井下数字化水位测控系统研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 课题研究背景与意义
    1.2 国内外相关研究现状
        1.2.1 国外相关研究现状
        1.2.2 国内相关研究现状
    1.3 主要内容与章节安排
第二章 数字化水位测控系统总体方案设计
    2.1 本章引言
    2.2 数字化水位测控系统总体方案
        2.2.1 数字化水位测控系统组成结构
        2.2.2 数字化水位测控系统总体设计
    2.3 数字化水位测控系统硬件设计方案
        2.3.1 矿用高可靠水位传感器设计方案
        2.3.2 数字化控制分站设计方案
    2.4 数字化水位测控系统井下水位控制方案
        2.4.1 煤矿井下水位控制结构
        2.4.2 煤矿井下水位控制策略
    2.5 数字化水位测控系统上位机软件设计方案
        2.5.1 上位机监控系统架构设计
        2.5.2 上位机监控系统操作流程设计
    2.6 数字化水位测控系统通信方案
        2.6.1 信息传输设计方案
        2.6.2 数据协议转换设计方案
    2.7 本章小结
第三章 矿用电容式水位传感器设计
    3.1 本章引言
    3.2 电容式水位传感器测量系统设计
        3.2.1 电容式水位传感器硬件电路设计
        3.2.2 电容式水位传感器软件设计
    3.3 电容式水位传感器数字通信系统设计
        3.3.1 电容式水位传感器RS-485 数据传输原理
        3.3.2 电容式水位传感器RS-485 通信硬件电路设计
        3.3.3 电容式水位传感器RS-485 通信软件设计
    3.4 电容式水位传感器性能验证实验
        3.4.1 电容式水位传感器测量性能验证实验
        3.4.2 电容式水位传感器RS-485 通信性能验证实验
    3.5 本章小结
第四章 数字化水位测控系统井下控制分站设计
    4.1 本章引言
    4.2 测控系统井下控制分站结构设计
        4.2.1 井下控制分站硬件电路设计
        4.2.2 井下控制分站软件设计
    4.3 测控系统井下控制分站通信系统设计
        4.3.1 井下控制分站CAN总线数据传输原理
        4.3.2 井下控制分站CAN总线通信硬件电路设计
        4.3.3 井下控制分站CAN总线通信软件设计
    4.4 测控系统井下控制分站性能验证实验
        4.4.1 井下控制分站控制性能验证实验
        4.4.2 井下控制分站通信性能验证实验
    4.5 本章小结
第五章 数字化水位上位机监控系统设计
    5.1 本章引言
    5.2 上位机与分站通信系统设计
        5.2.1 Modbus TCP/IP数据传输原理
        5.2.2 Modbus TCP/IP通信硬件电路设计
        5.2.3 Modbus TCP/IP通信软件设计
    5.3 水位测控系统上位机组态软件设计
        5.3.1 上位机人机交互界面设计
        5.3.2 上位机信息发布设计
        5.3.3 上位机数据库查询设计
        5.3.4 水位控制脚本算法设计
    5.4 上位机性能验证实验
        5.4.1 上位机与分站通信性能验证实验
        5.4.2 测控系统运行性能验证实验
    5.5 本章小结
第六章 总结与展望
    6.1 总结
    6.2 展望
参考文献
攻读学位期间取得的科研成果
致谢

(7)大型新型干法水泥生产线DCS控制系统设计(论文提纲范文)

摘要
abstract
1 绪论
    1.1 研究背景及意义
    1.2 国内外研究现状与发展
    1.3 主要研究内容
2 大型新型干法水泥生产线DCS控制系统方案设计
    2.1 引言
    2.2 新型干法水泥生产线的工艺要求分析
        2.2.1 生产方法
        2.2.2 生产工艺流程
    2.3 新型干法水泥生产线电气要求分析
        2.3.1 高压配电系统
        2.3.2 低压配电系统
        2.3.3 电气控制
        2.3.4 高压设备保护及测量
        2.3.5 其它电气要求
    2.4 新型干法水泥生产线仪表检测要求分析
        2.4.1 仪表测点要求
        2.4.2 生料质量控制系统
        2.4.3 喂料控制系统
        2.4.4 窑胴体扫描系统
        2.4.5 工业电视系统
        2.4.6 气体成份分析系统
    2.5 新型干法水泥生产线自动化要求分析
    2.6 关于电动机优先控制方式的探讨
        2.6.1 电动机优先控制方式简介
        2.6.2 三种优先控制方式的特点
        2.6.3 结论
    2.7 本章总结
3 大型新型干法水泥生产线DCS控制系统硬件配置
    3.1 引言
    3.2 中控室操作站配置
        3.2.1 操作站(OS)
        3.2.2 工程师工作站(EWS)
        3.2.3 配置清单
    3.3 网络配置
        3.3.1 以太网
        3.3.2 MB+网络
    3.4 现场控制站配置
        3.4.1 现场控制器
        3.4.2 网络性能
        3.4.3 现场控制站I/O特性
        3.4.4 不间断电源UPS
        3.4.5 I/O点数统计和现场站配置清单
    3.5 本章小节
4 大型新型干法水泥生产线DCS控制系统软件设计
    4.1 引言
    4.2 Unity Pro软件
        4.2.1 功能块的更新
        4.2.2 CPU与IO部分的通讯
        4.2.3 Unity Pro中项目设置
        4.2.4 创建一个新设备
    4.3 Vijeo Citect软件
        4.3.1 Citect服务器和客户端
        4.3.2 计算机配置文件Citect.ini
        4.3.3 Citect配置环境简介
        4.3.4 上位程序的构成
    4.4 水泥生产线上位机画面功能设计
    4.5 施耐德Quantum与西门子S7-300/400通讯解决方案
        4.5.1 系统连接示意图
        4.5.2 实现的指导思想
        4.5.3 Modbus协议的简单介绍
        4.5.4 实现方法
    4.6 本章小结
5 总结与展望
    5.1 主要结论
    5.2 存在的问题和对未来工作的展望
参考文献
作者在读期间研究成果和获奖
致谢

(8)矿井提升机全自动运行监控系统研究(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 课题背景
    1.2 国内外研究现状
    1.3 研究意义和内容
2 矿井提升机全自动运行监控系统方案设计
    2.1 矿井提升机系统结构分析
    2.2 矿井提升机主要部分介绍
    2.3 矿井提升机冗余PLC控制系统总体方案设计
        2.3.1 矿井提升机监控系统分析
        2.3.2 总体方案设计
    2.4 系统主要工作过程
    2.5 本章小结
3 矿井提升机节能运行控制方法研究
    3.1 矿井提升机S行程控制曲线分析
    3.2 矿井提升机运行能耗分析
    3.3 矿井提升机节能运行控制参数求解
        3.3.1 提升机运行决策的适应度
        3.3.2 基于模拟退火算法的控制参数求解
        3.3.3 基于遗传算法的控制参数求解
        3.3.4 基于模拟退火-遗传算法的控制参数求解
    3.4 仿真结果与分析
        3.4.1 三种智能优化算法结果比较与分析
        3.4.2 提升机运行能耗分析
    3.5 本章小结
4 基于模糊故障树的矿井提升机故障诊断分析
    4.1 矿井提升机常见故障原因分析
    4.2 模糊故障树基本理论
        4.2.1 故障树理论
        4.2.2 模糊故障树理论
        4.2.3 模糊数模型的选择
        4.2.4 模糊数的运算规则
        4.2.5 模糊算子
    4.3 基于模糊故障树矿井提升系统故障分析
        4.3.1 模糊故障树分析步骤
        4.3.2 提升系统模糊故障树建模
        4.3.3 模糊故障树重要度
        4.3.4 最小割集的求法
    4.4 钢丝绳故障树分析实例
        4.4.1 钢丝绳模糊故障树定性分析
        4.4.2 钢丝绳模糊故障树定量分析
    4.5 本章小结
5 矿井提升机全自动运行监控系统软硬件设计
    5.1 矿井提升机全自动运行监控系统硬件设计
        5.1.1 PLC内部主体与外部设备连接
        5.1.2 矿井提升机控制系统选型
        5.1.3 矿井提升机系统I/O分配
        5.1.4 安全回路设计
        5.1.5 控制系统其它模块设计
        5.1.6 矿井提升机控制系统实现功能
    5.2 矿井提升机全自动运行监控系统软件设计
        5.2.1 STEP7简介
        5.2.2 主控程序设计
        5.2.3 节能运行控制子程序设计
        5.2.4 固定值传送模块设计
        5.2.5 模拟量处理模块设计
        5.2.6 安全回路模块设计
        5.2.7 故障处理模块设计
    5.3 本章小结
6 上位机监控软件设计
    6.1 上位机监控软件设计
        6.1.1 WinCC简介
        6.1.2 创建组态项目
        6.1.3 设置组态变量
    6.2 矿井提升机项目界面设计
        6.2.1 矿井提升机主要界面设计
        6.2.2 矿井提升机故障树界面设计
    6.3 运行调试
    6.4 本章小结
7 总结与展望
    7.1 总结
    7.2 展望
参考文献
致谢
作者简介及读研期间主要科研成果

(9)基于Web技术的金川公司三矿区通风管理系统研究(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 课题研究的背景及意义
    1.2 国内外研究现状及发展趋势
    1.3 主要研究内容与技术路线
        1.3.1 研究内容
        1.3.2 技术路线
2 通风系统现状及设计需求分析
    2.1 矿井概况
    2.2 矿井通风系统分析
    2.3 矿井通风设备概况
    2.4 通风系统存在的问题
    2.5 系统设计总体需求分析
        2.5.1 系统设计基本原则
        2.5.2 系统设计目标
    2.6 系统设计功能需求分析
        2.6.1 主要通风机监测控制模块需求分析
        2.6.2 辅助通风机监测控制模块需求分析
        2.6.3 局部通风机监测控制模块需求分析
        2.6.4 风门监测控制模块需求分析
        2.6.5 风窗监测控制模块需求分析
        2.6.6 风墙监测模块需求分析
        2.6.7 其他功能需求分析
    2.7 系统设计非功能需求分析
        2.7.1 数据需求分析
        2.7.2 安全需求分析
3 通风管理系统总体设计
    3.1 系统采用的关键技术及环境配置
        3.1.1 系统采用的关键技术
        3.1.2 系统运行环境配置
    3.2 系统总体架构设计
    3.3 网络拓扑架构设计
    3.4 系统功能结构设计
    3.5 系统数据库设计
    3.6 数据采集设计
        3.6.1 安全监测监控系统
        3.6.2 区域控制系统
    3.7 主要通风机监测控制模块设计
    3.8 辅助通风机监测控制模块设计
    3.9 局部通风机监测控制模块设计
    3.10 自动化风门监测控制模块设计
    3.11 自动化风窗监测控制模块设计
    3.12 风墙监测模块设计
4 通风管理系统功能实现
    4.1 三维通风辅助决策系统
    4.2 登录
    4.3 系统管理
        4.3.1 用户管理
        4.3.2 角色管理
        4.3.3 部门管理
    4.4 设备管理
        4.4.1 地理位置管理
        4.4.2 模块参数管理
        4.4.3 风机管理
        4.4.4 通风构筑物管理
    4.5 远程监测及控制
        4.5.1 主要通风机远程监测及控制
        4.5.2 辅助通风机远程监测及控制
        4.5.3 局部通风机远程监测及控制
        4.5.4 自动化风门远程监测及控制
        4.5.5 自动化风窗远程监测及控制
        4.5.6 风墙远程监测
    4.6 历史数据
    4.7 报警信息
    4.8 系统监控
5 结论及展望
    5.1 结论
    5.2 展望
参考文献
致谢
作者简介及读研期间主要科研成果

(10)五阳煤矿新副井提升机改造与调试(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 课题背景及意义
    1.2 提升机改造的主要内容
第二章 提升机机械部分改造
    2.1 技术改造目标
    2.2 机械部分改造方案
    2.3 电动机选型
    2.4 提升系统计算和校验
    2.5 本章小结
第三章 电控系统硬件设计
    3.1 中压开关柜
    3.2 全数字直流传动调速控制系统
    3.3 低压供电系统
    3.4 与液压站接口
    3.5 与润滑油站的接口
    3.6 操作台
    3.7 上位机监视系统
    3.8 传感器
    3.9 视频监视系统
第四章 软件设计
    4.1 提升机工艺控制及监视保护系统
    4.2 下位机PLC编程
        4.2.1 地址分配
        4.2.2 PLC硬件组态
        4.2.3 主程序梯形图设计
    4.3 上位机编程
        4.3.1 上位机监视系统
        4.3.2 上位机界面设计
第五章 系统的现场调试
    5.1 直流传动系统调试
    5.2 主控系统调试
    5.3 主控系统与传动系统联调
    5.4 系统功能和性能测试
    5.5 视频监视系统的调试
    5.6 PLC断电程序丢失恢复方法
第六章 总结
参考文献
附录1
附录2
攻读学位期间发表的学术论文目录
致谢

四、一种经济型矿井远程监视系统的研究及实现(论文参考文献)

  • [1]基于多系统融合的反风演练指挥平台设计与应用[J]. 王宝来,胡开庚,陈安国,韩国庆,袁志金. 工矿自动化, 2021(10)
  • [2]金属矿山井下主扇风机远程实时监控系统的研究及应用[J]. 高连月,徐德亮,周雨松,陈思. 金属矿山, 2021(06)
  • [3]自动化电力监控系统在煤矿中的应用[J]. 毛小学,李晓亮,武伟伟. 中国新技术新产品, 2021(11)
  • [4]基于无线网络的煤矿环境监控系统及故障诊断技术研究[D]. 闵凡超. 齐鲁工业大学, 2021(09)
  • [5]厚煤层综放开采顶煤破碎机理及智能化放煤控制研究[D]. 霍昱名. 太原理工大学, 2021(01)
  • [6]煤矿井下数字化水位测控系统研究[D]. 徐晓天. 太原理工大学, 2021(01)
  • [7]大型新型干法水泥生产线DCS控制系统设计[D]. 曹宇. 西安建筑科技大学, 2021(01)
  • [8]矿井提升机全自动运行监控系统研究[D]. 胡雪雪. 安徽理工大学, 2020(07)
  • [9]基于Web技术的金川公司三矿区通风管理系统研究[D]. 陈帅. 安徽理工大学, 2020(07)
  • [10]五阳煤矿新副井提升机改造与调试[D]. 赵涛涛. 太原理工大学, 2020(01)

标签:;  ;  ;  ;  ;  

经济型矿山远程监控系统的研究与实现
下载Doc文档

猜你喜欢